Posts by Claire (Page 2)

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

GPS puzzle box

Posted by Claire on 18 March 2015

Forum user Bob Day shared his GPS puzzle box, which uses an A-Star 32U4 Micro, USGlobalSat EM-506 GPS Receiver, servo, and LCD to open a box only at a specific location. It also uses our S7V8F5 step-up/step-down regulator to provide power the A-Star and GPS module. In his post, Bob says that he got the idea from Mikal Hart’s “Reverse Geocache Puzzle Box”, which you can see in action in this video.

Top of GPS puzzle box by forum user Bob Day.

Pictures, connections, and the code used for the box can be found in Bob’s forum post.

New product: iMAX B6AC V2 Balance Charger and Discharger

Posted by Claire on 16 January 2015
Tags: new products

We have carried the iMAX B6AC charger from SkyRC for many years and often use it to charge batteries for our own projects and robot contests, so we are happy to now be carrying the upgraded iMAX B6AC V2 Balance Charger and Discharger. Both versions of the iMAX B6AC are capable of charging or discharging NiMH, NiCd, Pb, LiPo, Li-ion, and LiFe batteries and can be powered either from AC mains power or a DC input. The new version of the charger has all the same advanced features as the original, like individual cell balancing for up to 6 lithium cells, delta-peak sensitivity, and cyclic charging and discharging. In addition, version two of the charger is more accurate, more stable, and has many new features. Some of the new features include a Micro-USB connection for interfacing with SkyRC’s ChargeMaster PC software and upgrading the firmware, user control over the final battery voltage when charging, individual lithium cell voltage display, and an internal resistance meter.

Bottom view of the iMAX B6AC V2 showing the holographic label with scratch-and-reveal security code.

There are many counterfeit chargers that look almost identical to SkyRC products, so as with the first version, we buy these directly from SkyRC and take care to ensure that our units are genuine. If you would like to double check the authenticity of the iMAX B6AC V2 that you receive, you can reveal the security code under the scratch-and-reveal portion of the holographic label on the bottom of the charger and enter it on the SkyRC web site.

Need batteries for your charger? While we do carry some basic NiMH cells and packs, we recommend that you check out the options at local stores and online, since government restrictions, shipping, and storage issues make this a tough area for a small business to compete in. For larger packs and lithium batteries in particular, there are a number of hobby supply stores shipping from Hong Kong or China that provide excellent options.

For more information about the iMAX B6AC V2 and its features, please see its product page.

Sparky the assistive companion robot

Posted by Claire on 31 December 2014

Forum member jr1985 posted about Sparky, a robot that uses a Micro Maestro and custom Visual Basic software running on a laptop. The goal is for sparky to one day become an assistive companion robot that entertains and helps elderly or disabled people. Currently, Sparky is able to avoid obstacles and navigate through rooms while logging movements to map the areas it encounters. And it has some dancing skills:

For all the Sparky videos, take a look at jr1985’s YouTube channel.

Scary shaking tombstone

Posted by Claire on 15 October 2014
Scary shaking tombstone

Before we started our Halloween projects, several of the Pololu engineers took a trip to a local Halloween store to get inspired. At the store there was a wall lined with the polystyrene foam tombstones that are meant to be stuck into your front lawn. They immediately made me think of the graveyard outside the haunted mansion at Disneyland, and I knew that I wanted to make one of them shake and scream. For added effect, I also picked one that had a few skulls on it, so I could place red LEDs in the eyes. Below are some of the details that went into making the project so far. Continued…

New Product: 5V, 5A Step-Down Voltage Regulator D24V50F5

Posted by Claire on 3 October 2014
Tags: new products

Remember the post I wrote two weeks ago about our tiny D24V25F5 voltage regulator and some of the testing that we did on it? Well, we were so happy with how that regulator turned out that we decided to make a higher-power version with a larger inductor and beefier MOSFETs. This new regulator is the D24V50F5, and while it is only 0.1″ bigger than its 2.5 A cousin, it can deliver 5 amps!

Side-by-side comparison of the 2.5A D24V25Fx (left) and 5A D24V50Fx (right) step-down voltage regulators.

You can see the bigger MOSFETs on the bottom side:

Comparison of the D24V25Fx (left) and D24V50Fx voltage regulators showing larger MOSFETs on the higher-power board.

The D24V50F5 can also take inputs up to 38V and has typical efficiencies of 85% to 95%. It’s amazing how much power these little 3×3 mm MOSFETs can handle, and with its compact size and high power, this regulator is our new favorite.

New product: 5V, 2.5A Step-Down Voltage Regulator D24V25F5

Posted by Claire on 18 September 2014
Tags: new products

Just about every integrated switching regulator datasheet I come across advertises how easy it is to use the chip, which is probably a good sign that it’s not necessarily that easy. I have designed several of our regulator boards, and for the most part, following the manufacturer recommendations and warnings about short traces and small loops led to working designs without much drama. But, as we push for higher performance, it can get tricky, and I thought I would share some fun pictures of what goes into troubleshooting a design that ought to work but did not.

This instance is about the D24V25F5 step-down regulator we just released today. It should have been straightforward because the basic circuit is very similar to that of the higher-power D24V60F5 and D24V90F5 regulators we released earlier this year. Because this board was supposed to be really small, I designed it with components tightly packed on both sides, which meant I had to make compromises on some of those trace lengths and loop sizes. It wasn’t even clear that the circuit would be routable with just two PCB layers, so when I did find a solution, the design team wanted to try it even though we knew we were pushing our luck.

Pololu 2.5A Step-Down Voltage Regulator D24V25Fx, side view.

Well, if we had been lucky, you might have been reading a less interesting version of this new product announcement three weeks ago. As is typical for these borderline cases, it was the especially hope-dashing kind of failure where a casual test indicated that the board was working, but more in-depth tests revealed stability and performance issues. To make sure the components were not the source of the problem, we put the exact same components onto the PCB of the larger version that already worked. The pictures below show the D24V60F5 regulator (left) populated with its standard components and the D24V60F5 regulator’s PCB populated with the components for the new D24V25F5 (right).

Pololu 5V, 6A Step-Down Voltage Regulator D24V60F5.

Prototype D24V60F5 regulator PCB populated with the components for the D24V25F5 regulator.

The new components on the old board worked, so after some final checks that the new prototypes were assembled correctly, we knew it was a layout issue. We wanted assurance that the design could work before just diving into a four-layer revision, so I took some prototypes and added redundant connections to see their impact. The pictures below show some of my test boards with varying numbers of additional ground connections.

I was able to see that the more additional ground connections there were, the more the issues went away. So, I routed the four-layer board, and after a week of tests on over a dozen prototypes, I am happy to announce the release of our most sophisticated regulator yet! The D24V25F5 buck regulator generates 5 V from input voltages of up to 38 V with typical efficiencies of 85% to 95%. The board measures only 0.7″ × 0.7″, but it allows a typical continuous output current of up to 2.5 A.

We are quite happy with how manufacturing of these units is going, so we expect to be moving toward more dense designs like this in future products.

New products: Perma-Proto breadboard PCBs from Adafruit

Posted by Claire on 28 July 2014
Tags: new products

Securely connecting and mounting the electronics for your robot or other project is a key step in taking it from a prototype to a finished design. These perma-proto boards from Adafruit use the same basic through-hole layout as standard solderless breadboards while allowing for permanent solder connections, which makes it easy to transfer your electronics from one to the other.

We are now carrying four types of perma-proto boards:

The quarter-size perma-proto board, at 1.7″ × 2.0″, is slightly larger than a 170-point breadboard and has labels, 15 rows of pins, and two mounting holes.

Adafruit Perma-Proto Quarter-Sized Breadboard PCB.

Adafruit Perma-Proto Half-Sized Breadboard PCB.

The half-size perma-proto board is 3.2″ × 2.0″, which is about the same size as our 400-point beardboard, and has labels, 30 rows of pins, and two mounting holes.

The full-size perma-proto board is similar in size to our 830-point breadboard. It measures 6.2″ × 2.0″ and has labels, 60 rows of pins, and three mounting holes.

Adafruit Perma-Proto Full-Sized Breadboard PCB.

Adafruit Flex Perma-Proto Half-Sized Breadboard Flex-PCB.

The flexible perma-proto board is made of a thin polyamide film that allows it to be bent, flexed, and cut to fit your project. This version is 3.1″ × 1.7″ (similar in size to the half-size board) and only 0.005″ thick. It contains 30 rows of pins and three mounting holes.

Each board uses 47 mil (1.2 mm) diameter through holes to accommodate parts with thick leads and is through-plated for strength, which means that the pads are less likely to be ripped of during soldering or rework.

Geiger counter using A-Star

Posted by Claire on 25 June 2014

The inside of the Geiger counter.

The home-made Geiger counter featured in this post by forum user bob_day uses an A-Star 32U4 Micro, LND 7313 Geiger tube, and LCD to measure and display Geiger tube counts. The LCD displays the counts detected during the last minute, the average counts per minute, and the maximum counts in a minute. The project was originally designed for the Arduino Micro, but the program was able to run on the A-Star without any software modifications. The entire project is powered from one S7V8A adjustable step-up/step-down voltage regulator, and the conditioning part of the circuit, which shapes the output into narrow pulses, was designed by bob_day . Schematics and code for the project are included in the forum post.

The case and display of the Geiger counter.

New products (and demo): Force-sensing linear potentiometers and resistors

Posted by Claire on 15 May 2014
Tags: new products

We are now carrying four exciting new sensors from Interlink Electronics:

The two force-sensing resistors (or FSRs, for short) are short-tail versions of the small, circular FSRs we already carry, which allows them to be integrated into applications with tighter space constraints. These sensors act just like variable resistors that depend on the applied pressure, so you can put them into a simple voltage divider circuit and measure the force on them with a single analog-to-digital (ADC) microcontroller input.

0.6″-diameter short-tail force sensing resistor (FSR) next to a 0.6″-diameter FSR with a standard tail.

The two force-sensing linear potentiometers (or FSLPs) take the force-measuring functionality of FSRs and add in the ability to detect the location of the force, all while being an entirely passive component that is incredibly easy to use.

The two force-sensing linear potentiometers (FSLPs).

These FSLPs are exciting because they enable fun new touch interfaces, not only for you to interact with your project but for your project to interact with the world. We decided to make a quick demo for the Las Vegas Mini Maker Faire 2014 to show just how easy it was to do something cool with this sensor. The video at the top of this blog post shows the demo in action.

In the demo, a 4.0″×0.4″ FSLP is used with an Arduino Uno R3 to meassure the position and pressure of the user’s finger. (For applications where space is tight, smaller modules like our Arduino-compatible A-Star Micro can be directly substituted for the Uno.) Using the strip requires four connections to a microcontroller and one additional resistor. Two of the required connections must be analog inputs. Four connections for one sensor might seem like a lot to deal with, but step-by-step procedures in section 5 of the sensor’s integration guide (513k pdf) make it easy to get the sensor working, and the Arduino code used in this demo is available on github to help get you started. A diagram of the connections made between the sensor, Arduino, and LED strip in this demo are shown below.

The connections shown in the diagram also work with the shorter 1.4″×0.4″ FSLP (referred to as “standard FSLP” in the integration guide), though the pin numbers that correspond to each of the sensors outputs (SL, D1, and D2) are different for the two sizes of FSLP. The pin numbers for each FSLP can be seen in Figure 9 of the FSLP Integration Guide. In the guide the 4.0″×0.4″ FSLP is referred to as a “10 cm FSLP”.

Once the Arduino reads the position and pressure data from the sensor, it sends signals to a WS2812B addressable LED strip that control the number of LEDs that turn on and their color. The further along the strip your finger moves the greater the number of LEDs that light up, and the more pressure you apply the more the color of all the LEDs changes from blue to red.

To make the demo easy to transport and able to be left on all day, a 9V wall adapter was used to power the Arduino and 5V step-down regulator. The power connections from the regulator’s 5V output to the power input of the LED strip were also simplified by using a DC barrel jack to terminal block adapter and a DC barrel plug to terminal block adapter. The structure of the demo was laser cut from 1/8″ clear acrylic, and aluminum standoffs were used as spacers.

If you guys do something cool with our force-sensing linear potentiometers or resistors, we’d love to hear about it!

Maker Faire demo: automated treasure chest with jrk motor controller and linear actuator

Posted by Claire on 25 April 2014

Maker Faire demo: automated treasure chest with jrk motor controller and linear actuator

This blog post is part of a continuing series of blogs about the demos that Pololu displayed at our booth at Las Vegas Mini Maker Faire 2014. For more about the Faire and a video, see my previous blog post. This blog post will focus on our automated treasure chest demo. Continued…

New Products

Pololu 38 kHz IR Proximity Sensor, Fixed Gain, High Brightness
Addressable High-Density RGB 72-LED Strip, 5V, 0.5m (SK6812)
Pololu 38 kHz IR Proximity Sensor, Fixed Gain, Low Brightness
Pololu 5V, 15A Step-Down Voltage Regulator D24V150F5
Pololu 9V, 15A Step-Down Voltage Regulator D24V150F9
Addressable RGB 30-LED Strip, 5V, 1m (SK6812)
UM7-LT Orientation Sensor
Addressable RGB 150-LED Strip, 5V, 5m (SK6812)
Addressable RGB 120-LED Strip, 5V, 2m (SK6812)
Pololu 7.5V, 15A Step-Down Voltage Regulator D24V150F7
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors