Posts tagged “new products”

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

Popular tags: community projects new products raspberry pi arduino more…

New products: A5984 Stepper Motor Driver Carriers

Posted by Ben on 6 September 2024
Tags: new products

We are excited to introduce our new series of stepper motor drivers based on the Allegro A5984 that offer an easy way to control bipolar stepper motors from supply voltages between 8 V and 40 V (absolute max). It’s hard to believe it’s been 15 years since we introduced the original A4983 stepper motor driver carrier in the small 16-pin form factor that would become ubiquitous for stepper motor drivers. We updated the product in 2011 when Allegro released the newer A4988, but since then we have released boards for stepper motor drivers from other semiconductor manufacturers, including Texas Instruments (most notably the DRV8825, and DRV8834, and more recently the DRV8434 series), Monolithic Power Systems (MP6500), STMicroelectronics (STSPIN820 and STSPIN220), and Toshiba (TB67S249FTG and TB67S279FTG). The new Allegro A5984 carriers, which can be used as drop-in replacements for the A4983/A4988 in many applications, bring us full circle with those original drivers, and with support from Allegro, we are able to offer them at extra low prices.

Minimal wiring diagram for connecting a microcontroller to an A4988 stepper motor driver carrier (full-step mode).

Minimal wiring diagram for connecting a microcontroller to an A5984 Stepper Motor Driver Carrier, Adjustable Current, Blue Edition.

As with our other stepper driver products, we are offering the A5984 carriers with small trimmer potentiometers for setting the current limit. However, these can be a little fiddly to work with, so we are also offering several fixed-current versions for cases where you just want a particular set point without having to tune each board (for volume applications, we can do custom production runs with whatever set point you need). We also have two PCB options—a standard 2-layer version that is most economical for lower-current applications, and a 4-layer “Blue Edition” for maximum performance that can deliver up to 1.2 A continuous per phase (heat sinks and active air flow can bump that higher). The following table shows all the options:


Adjustable Current,
Blue Edition

Adjustable Current

Fixed 1.5A@5V / 1A@3.3V,
Blue Edition

Fixed 1A@5V / 660mA@3.3V,
Blue Edition

Fixed 750mA@5V / 500mA@3.3V

Fixed 500A@5V / 330mA@3.3V
Current limit
(VDD = 5 V):
adjustable
(potentiometer)

1.2 A max continuous
2 A peak*
adjustable
(potentiometer)

1 A max continuous
2 A peak*
1.5 A* 1 A 750 mA 500 mA
Current limit
(VDD = 3.3 V):
1 A 660 mA 500 mA 330 mA
Available versions:
PCB layers: 4 2 4 4 2 2
Price without header pins: $3.97 $3.75 $3.75 $3.75 $3.49 $3.49
Price w/headers soldered: $4.97 $4.75 $4.75 $4.75 $4.49 $4.49
* This current exceeds what the module can deliver continuously and is only achievable for short durations or with sufficient additional cooling (e.g. adding heat sinks or active air flow).

Compared to those original A4988s, the A5984 carriers offer a number of improvements, including a higher maximum operating voltage, more microstep options and higher-resistance current sense resistors for improved microstepping performance, a fault output for reporting over-current faults, and an adaptive decay current control algorithm that automatically adjust the amount of fast decay to optimize the motor current waveform.

Introductory special discount! To celebrate the release of the A5984 carriers, the first hundred customers to use coupon code A5984INTRO can 15% off up to five units of each!

The following tables show our full selection of 16-pin stepper motor drivers:


STSPIN­220

DRV8834

A4988
(original)

A4988,
Black Ed.

MP6500,
Pot. CC

MP6500,
Digital CC

A5984

A5984,
Blue Ed.
Driver chip: STMicro
STSPIN­220
TI
DRV8834
Allegro A4988 MPS MP6500 Allegro A5984
Min operating voltage: 1.8 V 2.5 V 8 V 4.5 V 8 V
Max operating voltage: 10 V 10.8 V 35 V 35 V 40 V
Max continuous current per phase:(1) 1.1 A 1.5 A 1 A 1.2 A 1.5 A 1 A 1.2 A
Peak current per phase:(2) 1.3 A 2 A 2 A 2.5 A 2 A 2 A
Microstepping down to: 1/256 1/32 1/16 1/8 1/32
Board layer count: 4 4 2 4 4 2 4
Special features: low input
voltage
low input
voltage
digital current
control
versions also available
with fixed current limits
Available with headers soldered?: Yes Yes Yes Yes Yes Yes Yes Yes
1-piece price: $7.95 $7.95 $4.49 $4.95 $6.95 $6.95 $3.75 $3.97
1 On Pololu carrier board, at room temperature, and without additional cooling.
2 Maximum theoretical current based on components on the board (additional cooling required).

STSPIN­820

DRV8825

TB67S279­FTG

TB67S249­FTG

DRV8434

DRV8434A

DRV8434S,
Pot. Max.

DRV8434S,
2A Max.
Driver chip: STMicro
STSPIN­820
TI
DRV8825
Toshiba
TB67S279­FTG
Toshiba
TB67S249­FTG
TI DRV8434 TI DRV8434A TI DRV8434S
Min operating voltage: 7 V 8.2 V 10 V 10 V 4.5 V 4.5 V 4.5 V
Max operating voltage: 45 V 45 V 47 V 47 V 48 V(3) 48 V(3) 48 V(3)
Max continuous current per phase:(1) 0.9 A 1.5 A 1.1 A 1.6 A 1.2 A 1.2 A 1.2 A
Peak current per phase:(2) 1.5 A 2.2 A 2 A 4.5 A 2 A 2 A 2 A
Microstepping down to: 1/256 1/32 1/32 1/32 1/256 1/256 1/256
Board layer count: 4 4 4 4 4 4 4
Special features: Auto Gain Control,
ADMD
Auto Gain Control,
ADMD
6 decay modes
with 2 smart
tune options
Stall detect,
smart tune ripple
control decay
SPI control, stall detect,
8 decay mode options
Available with headers soldered?: Yes Yes Yes Yes Yes Yes Yes Yes
1-piece price: $14.95 $15.95 $10.75 $12.95 $9.95 $12.95 $12.95 $12.95
1 On Pololu carrier board, at room temperature, and without additional cooling.
2 Maximum theoretical current based on components on the board (additional cooling required).
3 Not recommended for use with 48V batteries, which can be well above nominal when fully charged.

So many new Allegro current sensor carriers (58 and counting)!

Posted by Ben on 26 August 2024
Tags: new products

ACS71240 Current Sensor Carrier pinout.

We have released a ton of new current sensors! These boards, based on Allegro current-sensing ICs, have analog outputs with voltage proportional to the AC or DC current passing through the sensor while offering full electrical isolation of the current path from the sensor’s electronics. This isolation allows them to be inserted anywhere in the current path, including on the high side, and because the current path resistance is on the order of 1 mΩ or less, there is minimal effect on the rest of the system.

As with all our other carrier boards, we designed these current sensors to be usable in real-world applications rather than just as evaluation boards. To that end, we have released compact carriers for use in space-constrained systems and larger modules with more connection options available for higher-current applications. The large carriers offer better thermal dissipation thanks to their 6-layer PCBs and increased surface area, and the holes and slots for the current path connection points accommodate thicker wires along with a variety of high-current connectors (e.g. lugs, solderless ring terminals, and 4-pin terminal blocks).

We also want these modules to be usable as evaluation boards, so we have standardized our compact and large form factors, making it easier to swap among different boards to compare different sensor ICs. Additionally, having different form factors available for the same sensor IC makes it possible to evaluate how things like PCB area and the number of copper layers affects the sensor’s thermal performance.

ACS37220 Current Sensor Compact Carrier (top) and Large Carrier (bottom) size comparison.

ACS72981 Current Sensor Compact Carrier (top) and Large Carrier (bottom) size comparison.

CT432/CT433 TMR Current Sensor Compact Carrier (top) and Large Carrier (bottom) size comparison.

Here is a quick summary of the four new sensor families:

  • ACS71240: low-cost measurement of bidirectional currents ranging from 10 A to 50 A, with dedicated versions for 3.3 V and 5 V systems. A unidirectional 50 A, 5 V version is also available.
  • ACS37220: low-cost measurement of bidirectional currents ranging from 100 A to 200 A, with dedicated versions for 3.3 V and 5 V systems. These have extra-low 0.1 mΩ current paths through the sensor IC and user-configurable overcurrent fault thresholds.
  • ACS72981: high-bandwidth (250 kHz) measurement of unidirectional or bidirectional currents from 50 A to 200 A, with dedicated versions available for 3.3 V and 5 V systems.
  • CT432/CT433: extra high-bandwidth (1 MHz), low response time (300 ns) measurement of unidirectional or bidirectional currents from 20 A to 70 A, with dedicated versions available for 3.3 V and 5 V systems. Unlike the other Allegro sensor families we carry, which use Hall effect sensing, the CT432/CT433 sensors use tunneling magnetoresistance (which Allegro calls XtremeSense™ TMR) and are optimized for high dV/dt applications.

Here’s our full list of active and preferred current sensors:


ACS711 Current
Sensor Carriers
ACS71240 Current
Sensor Carriers
ACS724 Current
Sensor Carriers
ACS37220
Current Sensor
Compact Carriers
ACS37220
Current Sensor
Large Carriers
ACS72981
Current Sensor
Compact Carriers
ACS72981
Current Sensor
Large Carriers
CT432/CT433 TMR
Current Sensor
Compact Carriers
CT432/CT433 TMR
Current Sensor
Large Carriers
Sensor IC Allegro
ACS711KEXT
Allegro
ACS71240
Allegro
ACS724LLCTR
Allegro ACS37220 Allegro ACS72981xLR Allegro CT432/CT433
Sensing technology Hall effect Hall effect Hall effect Hall effect Hall effect XtremeSense™ TMR
(tunneling magnetoresistance)
Logic voltage range (V) 3.0–5.5 3.3V versions: 3.0–3.6
5V versions: 4.5–5.5
4.5–5.5 3.3V versions: 3.15–3.45
5V versions: 4.5–5.5
3.3V versions: 3.0–3.6
5V versions: 4.5–5.5
3.3V versions: 3.0–3.6
5V versions: 4.75–5.5
Current range / sensitivity Bidirectional:(1)
±15.5 A / 90 mV/A
±31 A / 45 mV/A
3.3V Bidirectional:
±10 A / 132 mV/A
±30 A / 44 mV/A
±50 A / 26.4 mV/A

5V Bidirectional:
±10 A / 200 mV/A
±30 A / 66 mV/A
±50 A / 40 mV/A

5V Unidirectional:
0–⁠50 A / 80 mv/A
5V Bidirectional:(2)
±2.5 A / 800 mV/A
±5 A / 400 mV/A
±10 A / 200 mV/A
±20 A / 100 mV/A
±30 A / 66 mV/A
±50 A / 40 mV/A

5V Unidirectional:(2)
0–⁠5 A / 800 mv/A
0–⁠10 A / 400 mv/A
0–⁠20 A / 200 mv/A
0–⁠30 A / 133 mV/A
3.3V Bidirectional:
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

5V Bidirectional:
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A
3.3V Bidirectional:
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

5V Bidirectional:
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A
3.3V Bidirectional:(1)
±50 A / 26.4 mV/A
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

3.3V Unidirectional:(1)
0–⁠50 A / 52.8 mv/A
0–⁠100 A / 26.4 mv/A
0–⁠150 A / 17.6 mv/A
0–⁠200 A / 13.2 mv/A

5V Bidirectional:(2)
±50 A / 40 mV/A
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A

5V Unidirectional:(2)
0–⁠100 A / 40 mv/A
0–⁠150 A / 26.7 mv/A
3.3V Bidirectional:(1)
±50 A / 26.4 mV/A
±100 A / 13.2 mV/A
±150 A / 8.8 mV/A

3.3V Unidirectional:(1)
0–⁠50 A / 52.8 mv/A
0–⁠100 A / 26.4 mv/A
0–⁠150 A / 17.6 mv/A
0–⁠200 A / 13.2 mv/A

5V Bidirectional:(2)
±50 A / 40 mV/A
±100 A / 20 mV/A
±150 A / 13.3 mV/A
±200 A / 10 mV/A

5V Unidirectional:(2)
0–⁠100 A / 40 mv/A
0–⁠150 A / 26.7 mv/A
3.3V Bidirectional:
±20 A / 50 mV/A
±30 A / 33.3 mV/A
±50 A / 20 mV/A

3.3V Unidirectional:
0–⁠50 A / 40 mv/A
0–⁠65 A / 30.8 mv/A

5V Bidirectional:
±20 A / 100 mV/A
±30 A / 66.7 mV/A
±50 A / 40 mV/A
±65 A / 30.8 mV/A

5V Unidirectional:
0–⁠50 A / 80 mv/A
0–⁠70 A / 57.1 mv/A
3.3V Bidirectional:
±50 A / 20 mV/A

3.3V Unidirectional:
0–⁠50 A / 40 mv/A
0–⁠65 A / 30.8 mv/A

5V Bidirectional:
±50 A / 40 mV/A
±65 A / 30.8 mV/A

5V Unidirectional:
0–⁠50 A / 80 mv/A
0–⁠70 A / 57.1 mv/A
IC path resistance 0.6 mΩ 0.6 mΩ 0.6 mΩ 0.1 mΩ 0.2 mΩ 1 mΩ
PCB 2 layers,
2-oz copper
2 layers,
2-oz copper
2 layers,
2- or 4-oz copper(4)
2 layers,
2-oz copper
6 layers,
2-oz copper
6 layers,
2-oz copper
6 layers,
2-oz copper
2 or 4 layers(5),
2-oz copper
6 layers,
2-oz copper
Max bandwidth 100 kHz 120 kHz 120 kHz(3) 150 kHz 250 kHz 1 MHz
Size 0.7″ × 0.8″ 0.7″ × 0.8″ 0.7″ × 0.8″ 0.7″ × 0.8″ 1.4″ × 1.2″ 0.7″ × 0.8″ 1.4″ × 1.2″ 0.8″ × 1.1″ 1.4″ × 1.2″
Overcurrent fault output User-configurable threshold
Common-mode field rejection
Non-ratiometric output
1-piece price $3.49 $3.95 $6.95$7.49 $4.95 $7.95 $9.95 $12.95 $8.95 $12.95

(1) Sensitivity when Vcc = 3.3 V; sensitivity is ratiometric.
(2) Sensitivity when Vcc = 5 V; sensitivity is ratiometric.
(3) Bandwidth can be reduced by adding a filter capacitor.
(4) ±50A version uses 4-oz copper PCB; all other versions use 2-oz copper.
(5) 50A and higher versions use 4-layer PCB; all other versions use 2-layer PCB.

More sensors are coming, and we will be releasing them as they become available. Do you have a favorite current sensor? Let us know in the comments!

New product: Pololu H2 High-Power Motor Driver 36v11 CS

Posted by Ben on 13 August 2024
Tags: new products

We’re excited to introduce our new 60V-max H2 High-Power Motor Driver 36v11 CS, which joins our lineup of high-power motor drivers as the new highest-voltage option. Like our other high-power motor drivers, this board is a discrete MOSFET H-bridge that is designed to drive large brushed DC motors. The H2 36v11 can supply a motor with continuous currents up to 11 A over a wide 5 V to 60 V (absolute maximum) operating range. The board also features reverse-voltage protection and an on-board bidirectional current sensor that provides a direct measurement of the motor current.

The H2 driver is designed to be a near drop-in replacement for its predecessor and for our lower-voltage G2 drivers, with an identical form factor and a similar pinout. Compared to its predecessor, the H2 version adds improvements such as reverse-voltage protection, current sensing, and compatibility with 3.3V systems (as well as 5V). Compared to the newer G2 drivers, the main differentiator is the wider operating voltage range, but the H2 36v11 CS also adds an on-board bidrectional current sensor that provides a direct measurement of the motor current, even when the driver isn’t actively driving. There are also differences in the pinout, control interface, and some aspects of the operation, so please see the H2 product page for more information on compatibility between it, its prececessor, and the G2 versions.

Introductory special discount! To celebrate the release of the H2 36v11 CS, the first hundred customers to use coupon code H236V11CSINTRO can get up to three units for just $34.95 each!

New product: VL53L4CD Time-of-Flight Distance Sensor Carrier

Posted by Ben on 2 August 2024
Tags: new products

We are pleased to announce the release of our new low-cost time-of-flight distance sensor featuring ST’s VL53L4CD. The VL53L4CD has a detection range of 1 mm to 120 cm (4 ft) with a resolution of 1 mm and an update rate of up to 100 Hz. This distance sensor is notable for being able to accurately measure the distances to objects even as they are almost touching the sensor face.

One interesting feature of the VL53L4CD is its Ultra-Low Power mode, which allows it to act as a basic proximity detector with greatly reduced average current consumption (less than 100 μA in some cases). In this mode, the sensor does not output distance and other data as usual; it simply raises an interrupt when a target is detected. This functionality is enabled with ST’s VL53L4CD ULP API (application programming interface), and the ULP and standard drivers can be used together to let the VL53L4CD switch from low-power proximity detection to accurate ranging once it sees a target. (ULP drivers are now available from ST for the VL53L1X and VL53L3CX as well.)

Introductory special discount! With the release of the VL53L4CD carrier, we are also bringing back introductory special discounts, which was how we celebrated the release of new products prior to the pandemic and ensuing parts shortages. The first hundred customers to use coupon code VL53L4CDINTRO can get up to five units for just $8.88 each!

The VL53L4CD is the new lowest-cost member of the ST FlightSense ToF sensor family, which includes higher-performance alternatives with longer ranges and capable of multi-target detection:


VL6180X
carrier

VL53L4CD
carrier

VL53L0X
carrier

VL53L1X
carrier

VL53L3CX
carrier

VL53L5CX
carrier

VL53L7CX
carrier

VL53L8CX
carrier
Maximum range:(1) 60 cm 120 cm 200 cm 400 cm 500 cm 400 cm 350 cm 400 cm
Minimum range: ~10 mm 1 mm ~30 mm 40 mm 10 mm 20 mm
Field of view: 25° 18° 25° 15° to 27° diagonal,
program­mable
25° 65° diagonal,
up to 8×8 zones
90° diagonal,
up to 8×8 zones
65° diagonal,
up to 8×8 zones
Other features: ambient light sensing,
low memory footprint(2)
low memory footprint(2),
ultra-low power mode
low memory footprint(2) low memory footprint(2),
ultra-low power mode
multi-target detection,
ultra-low power mode
multi-target detection multi-target detection multi-target detection,
improved performance
in ambient light
Maximum update rate:(1) ~150 Hz 100 Hz 50 Hz 100 Hz 125 Hz 60 Hz
Operating voltage range: 2.6 V to 5.5 V 2.5 V to 5.5 V 3.2 V to 5.5 V
Regulator voltage: 2.8 V 3.3 V 1.8 V and 3.3 V
Typical active-ranging
supply current:
25 mA 25 mA 20 mA 20 mA 20 mA 100 mA
Peak supply current: 40 mA 150 mA
Interface: I²C I²C, SPI
Dimensions: 0.5″ × 0.7″ 0.5″ × 0.9″
1-piece price: $13.49 $12.95 $14.95 $18.95 $16.95 $19.95 $19.95 $24.95
1 Effective range and update rate depend on configuration, target, and environment.
2 Suitable for use with typical 8-bit MCUs.

New products: 1.4-7V fine-adjust D30V3xMALx step-down voltage regulators

Posted by Ben on 2 July 2024
Tags: new products

1.4-7V, 3.4A Fine-Adjust Step-Down Voltage Regulator w/ Adjustable Low-Voltage Cutoff D30V30MALCMA.

1.4-7V, 3.8A Fine-Adjust Step-Down Voltage Regulator w/ Adjustable Low-Voltage Cutoff D30V33MALCMA.

We are now offering lower-voltage versions of our D30V3x step-down voltage regulators with a precision-adjustable 1.4 V to 7 V output. As with the rest of the D30V3x line, these new regulators work with input voltages between 3.3 V and 45 V and can deliver between 1 A and 4.5 A of output current, depending on the input and output voltages. They have very low dropout voltages and feature a power-good output for identifying when the output voltage is not being maintained. They also feature an enable pin with a precise threshold for turning off the regulator, and some of the versions have additional circuitry to offer a precision-adjustable low-voltage cutoff.

Four versions are available with this new 1.4 V to 7 V output range:

  • D30V30MAL – compact (0.6″ × 1.0″), double-sided assembly with precision-adjustable output and no low-voltage cutoff.
  • D30V30MALCMA – compact (0.6″ × 1.0″), double-sided assembly precision-adjustable output and precision-adjustable low-voltage cutoff.
  • D30V33MAL – larger (0.9″ × 1.2″), single-sided assembly with precision-adjustable output and no low-voltage cutoff. The increased heat dissipation from the larger boards let this version deliver slightly more current than the D30V30MAL.
  • D30V33MALCMA – larger (0.9″ × 1.2″), single-sided assembly with precision-adjustable output and precision-adjustable low-voltage cutoff. The increased heat dissipation from the larger boards let this version deliver slightly more current than the D30V30MALCMA.

The following table shows all of the members of the D30V3x family:

Regulator Output voltage Typical max
output current1
Input voltage2 Adjustable
low-voltage
cutoff
Size Price
#4891: D30V30F3 3.3 V 3.7 A 3.3 V – 45 V 0.7″ × 0.8″ $12.95
#4892: D30V30F5 5 V 3.4 A 5 V – 45 V $12.95
#4893: D30V30F6 6 V 3.3 A 6 V – 45 V $13.95
#4894: D30V30F7 7.5 V 3 A 7.5 V – 45 V $13.95
#4895: D30V30F9 9 V 2.9 A 9 V – 45 V $13.95
#4896: D30V30F12 12 V 2.8 A 12 V – 45 V $13.95
#4897: D30V30F15 15 V 2.7 A 15 V – 45 V $13.95
#4873: D30V30MAL 1.4 V – 7 V 3.4 A 3.3 V – 45 V 0.6″ × 1.0″ $16.95
#4872: D30V30MALCMA $19.95
#4875: D30V30MAS 4.2 V – 15 V 3 A 4.2 V – 45 V $16.95
#4874: D30V30MASCMA $19.95
#4853: D30V33MAL 1.4 V – 7 V 3.8 A 3.3 V – 45 V 0.9″ × 1.2″ $17.95
#4852: D30V33MALCMA $20.95
#4855: D30V33MAS 4.2 V – 15 V 3.3 A 4.2 V – 45 V $17.95
#4854: D30V33MASCMA $20.95
1At 30 V in. Actual achievable continuous output current is a function of input and output voltages and is limited by thermal dissipation.
2Operating voltage must be higher than the set output voltage and is subject to dropout voltage considerations.

New products: Micro Metal Gearmotors with integrated encoders

Posted by Ben on 17 April 2024

Micro Metal Gearmotor with 12 CPR encoder, back connector.

Micro Metal Gearmotor with 12 CPR encoder, side connector.

Our Micro Metal Gearmotors are now available with integrated quadrature encoders! These are the same top-entry and side-entry encoders that were previously only available separately, and now you can get them preassembled on the gearmotors and covered by a snap-on plastic cap. On the assembled units, the two available styles are denoted as “Back Connector”, which has the connector oriented parallel to the motor, and “Side Connector”, which is perpendicular to the motor. These connectors work with our assortment of female 6-pin JST SH-style cables and 6-pin JST SH-style connector boards.

For detailed dimensions, specifications, and usage information, see the Micro Metal Gearmotor datasheet (5MB pdf).

With 65 different combinations of gearboxes and motors each now available with two encoder styles, that makes 130 new products in all, and it increases our total Micro Metal Gearmotor selection to 260 versions. We are still working on getting everything stocked up, but we manufacture these in house, so we can make some of any particular version quickly. If there is a version you want that is currently out of stock, you can backorder it and we should be able to make and ship it in a few days. (Please note that we are currently not stocking the 5:1 versions with encoders but we are able to make them by special request; please contact us if you are interested in placing a special order for those.) Here is a full list of all the available options now:

Rated
Voltage
Stall
Current
No-Load
Current
No-Load
Speed
(RPM)
Extrapolated
Stall Torque
Max
Power
(W)
Approx
Gear
Ratio


No Encoder

w/ Extended
Motor Shaft

w/ Encoder,
Back Conn.

w/ Encoder,
Side Conn.
(kg⋅cm) (oz⋅in)
HPCB 12V
(high-power, carbon brushes)
12 V 0.75 A 100 mA 6800 0.09 1.3 5:1 #3036 #3047 #5204 #5205
80 mA 3400 0.17 2.4 1.5 10:1 #3037 #3048 #5206 #5207
2200 0.25 3.5 1.4 15:1 #4788 #4789 #5208 #5209
1100 0.39 5.4 1.1 30:1 #3038 #3049 #5210 #5211
650 0.67 9.3 1.1 50:1 #3039 #3050 #5212 #5213
450 1.0 14 1.1 75:1 #3040 #3051 #5214 #5215
330 1.3 18 1.1 100:1 #3041 #3052 #5216 #5217
220 1.8 25 1.0 150:1 #3042 #3053 #5218 #5219
160 2.5 35 1.0 210:1 #3043 #3054 #5220 #5221
130 3.0 42 1.1 250:1 #3044 #3055 #5222 #5223
110 3.3 46 1.0 298:1 #3045 #3056 #5224 #5225
85 5.0 69 1.1 380:1 #4798 #4799 #5226 #5227
35 10 140 1000:1 #3046 #3057 #5228 #5229
Rated
Voltage
Stall
Current
No-Load
Current
No-Load
Speed
(RPM)
Extrapolated
Stall Torque
Max
Power
(W)
Approx
Gear
Ratio
No Encoder w/ Extended
Motor Shaft
w/ Encoder,
Back Conn.
w/ Encoder,
Side Conn.
(kg⋅cm) (oz⋅in)
HPCB 6V
(high-power, carbon brushes)
6 V 1.5 A 170 mA 6500 0.09 1.3 5:1 #3060 #3082 #5178 #5179
150 mA 3300 0.17 2.4 1.3 10:1 #3061 #3071 #5180 #5181
2100 0.25 3.5 1.3 15:1 #4786 #4787 #5182 #5183
1100 0.45 6.2 1.2 30:1 #3062 #3072 #5184 #5185
650 0.74 10 1.2 50:1 #3063 #3073 #5186 #5187
430 1.1 15 1.3 75:1 #3064 #3074 #5188 #5189
330 1.6 22 1.3 100:1 #3065 #3075 #5190 #5191
220 2.0 28 1.1 150:1 #3066 #3076 #5192 #5193
160 2.8 39 1.1 210:1 #3067 #3077 #5194 #5195
130 3.2 44 1.1 250:1 #3068 #3078 #5196 #5197
110 3.4 47 1.0 298:1 #3069 #3079 #5198 #5199
85 5.0 69 1.1 380:1 #4796 #4797 #5200 #5201
33 11 150 1000:1 #3070 #3080 #5202 #5203
Rated
Voltage
Stall
Current
No-Load
Current
No-Load
Speed
(RPM)
Extrapolated
Stall Torque
Max
Power
(W)
Approx
Gear
Ratio
No Encoder w/ Extended
Motor Shaft
w/ Encoder,
Back Conn.
w/ Encoder,
Side Conn.
(kg⋅cm) (oz⋅in)
HP 6V
(high-power)
6 V 1.6 A 120 mA 6100 0.11 1.5 5:1 #1000 #2210 #5152 #5153
100 mA 3100 0.22 3.0 1.6 10:1 #999 #2211 #5154 #5155
2000 0.30 4.2 1.5 15:1 #4784 #4785 #5156 #5157
1000 0.57 7.9 1.5 30:1 #1093 #2212 #5158 #5159
590 0.86 12 1.3 50:1 #998 #2213 #5160 #5161
410 1.3 18 1.4 75:1 #2361 #2215 #5162 #5163
310 1.7 24 1.3 100:1 #1101 #2214 #5164 #5165
210 2.4 33 1.2 150:1 #997 #2386 #5166 #5167
150 3.0 42 1.1 210:1 #996 #2216 #5168 #5169
120 3.4 47 1.1 250:1 #995 #2217 #5170 #5171
100 4.0 56 1.1 298:1 #994 #2218 #5172 #5173
84 5.5 76 1.1 380:1 #4794 #4795 #5174 #5175
31 12 170 1000:1 #1595 #2373 #5176 #5177
Rated
Voltage
Stall
Current
No-Load
Current
No-Load
Speed
(RPM)
Extrapolated
Stall Torque
Max
Power
(W)
Approx
Gear
Ratio
No Encoder w/ Extended
Motor Shaft
w/ Encoder,
Back Conn.
w/ Encoder,
Side Conn.
(kg⋅cm) (oz⋅in)
MP 6V
(medium-power)
6 V 0.67 A 80 mA 4400 0.06 0.8 5:1 #2362 #2376 #5126 #5127
70 mA 2200 0.11 1.5 10:1 #2363 #2377 #5128 #5129
1400 0.20 2.8 0.70 15:1 #4782 #4783 #5130 #5131
720 0.33 4.6 0.57 30:1 #2364 #2378 #5132 #5133
420 0.54 7.5 0.55 50:1 #2365 #2379 #5134 #5135
290 0.78 11 0.54 75:1 #2366 #2380 #5136 #5137
220 0.94 13 0.50 100:1 #2367 #2381 #5138 #5139
150 1.3 18 0.48 150:1 #2368 #2382 #5140 #5141
100 1.7 24 0.46 210:1 #2369 #2383 #5142 #5143
88 2.2 31 0.48 250:1 #2370 #2384 #5144 #5145
73 2.4 33 0.44 298:1 #2371 #2385 #5146 #5147
57 3.6 50 0.53 380:1 #4792 #4793 #5148 #5149
22 6.7 93 1000:1 #2372 #3059 #5150 #5151
Rated
Voltage
Stall
Current
No-Load
Current
No-Load
Speed
(RPM)
Extrapolated
Stall Torque
Max
Power
(W)
Approx
Gear
Ratio
No Encoder w/ Extended
Motor Shaft
w/ Encoder,
Back Conn.
w/ Encoder,
Side Conn.
(kg⋅cm) (oz⋅in)
LP 6V
(low-power)
6 V 0.36 A 50 mA 2500 0.05 0.7 5:1 #1100 #2200 #5100 #5101
40 mA 1300 0.10 1.4 10:1 #1099 #2201 #5102 #5103
860 0.17 2.4 0.37 15:1 #4780 #4781 #5104 #5105
450 0.29 4.0 0.31 30:1 #993 #2202 #5106 #5107
270 0.44 6.1 0.29 50:1 #1098 #2203 #5108 #5109
180 0.64 8.9 0.29 75:1 #2360 #2209 #5110 #5111
130 0.74 10 0.25 100:1 #992 #2204 #5112 #5113
90 1.1 15 0.25 150:1 #1097 #2205 #5114 #5115
65 1.6 22 0.25 210:1 #1096 #2206 #5116 #5117
54 1.7 24 0.23 250:1 #1095 #2207 #5118 #5119
45 2.0 28 0.22 298:1 #1094 #2208 #5120 #5121
36 2.9 40 0.27 380:1 #4790 #4791 #5122 #5123
13 5.5 76 1000:1 #1596 #3058 #5124 #5125

Note: Stalling or overloading gearmotors can greatly decrease their lifetimes and even result in immediate damage. The recommended upper limit for instantaneous torque is 2.5 kg⋅cm (35 oz⋅in) for the 380:1 and 1000:1 gearboxes, and 2 kg⋅cm (25 oz⋅in) for all the other gear ratios; we strongly advise keeping applied loads well under this limit. Stalls can also result in rapid (potentially on the order of seconds) thermal damage to the motor windings and brushes, especially for the versions that use high-power (HP and HPCB) motors; a general recommendation for brushed DC motor operation is 25% or less of the stall current.

New products: D30V3x series step-down voltage regulators

Posted by Kevin on 20 March 2024
Tags: new products

We’re pleased to introduce the D30V3x line of step-down voltage regulators, our favorite new buck regulators for applications that need up to a few amps from input voltages up to 45 V. They can deliver between 1 A and 4 A of output current, depending on the input and output voltages, with very low dropout voltages. They also feature a power-good output for identifying when the output voltage is not being maintained, an enable pin with a precise threshold for turning off the regulator, and a soft-start feature that limits in-rush current and gradually ramps the output voltage on startup. The regulators include protections against reverse voltage (up to 40 V), input under-voltage, over-temperature, over-current, and short circuits.

The D30V3x line consists of the following three families:

  • The D30V30Fx regulators are compact, fixed-output versions available with output voltages from 3.3 V to 15 V.
  • The D30V30MAx regulators are compact, double-sided adjustable versions, with a precision-adjustable output voltage from 4.2 V to 15 V and an optional adjustable low-voltage cutoff.
  • The D30V33MAx regulators are larger adjustable versions with holes for terminal blocks and slightly higher maximum output current. These also have a precision-adjustable 4.2 V to 15 V output and an optional adjustable low-voltage cutoff.

Output voltage settings for the 4.2-15V Fine-Adjust Step-Down Voltage Regulator D30V3xMASx.

We’ve actually had the fixed-voltage versions available for a few months already, but we’ve just expanded the range with the release of the adjustable versions, which have multi-turn potentiometers for precisely setting the output voltage and/or low voltage cutoff. The following table shows all of the members of the D30V3x family:

Regulator Output voltage Typical max
output current1
Input voltage2 Adjustable
low-voltage
cutoff
Size
#4891: D30V30F3 3.3 V 3.7 A 3.3 V – 45 V 0.7″ × 0.8″
#4892: D30V30F5 5 V 3.4 A 5 V – 45 V
#4893: D30V30F6 6 V 3.3 A 6 V – 45 V
#4894: D30V30F7 7.5 V 3 A 7.5 V – 45 V
#4895: D30V30F9 9 V 2.9 A 9 V – 45 V
#4896: D30V30F12 12 V 2.8 A 12 V – 45 V
#4897: D30V30F15 15 V 2.7 A 15 V – 45 V
#4874: D30V30MASCMA 4.2 V – 15 V 3 A 4.2 V – 45 V 0.6″ × 1.0″
#4875: D30V30MAS
#4854: D30V33MASCMA 4.2 V – 15 V 3.3 A 4.2 V – 45 V 0.9″ × 1.2″
#4855: D30V33MAS
1At 30 V in. Actual achievable continuous output current is a function of input and output voltages and is limited by thermal dissipation.
2Operating voltage must be higher than the set output voltage and is subject to dropout voltage considerations.

New product: VL53L8CX Time-of-Flight 8×8-Zone Distance Sensor Carrier

Posted by Ben on 15 February 2024
Tags: new products

I’m excited to announce the release of our new VL53L8CX Time-of-Flight 8×8-Zone Distance Sensor Carrier, a multi-zone rangefinder based on ST’s latest VL53L8CX FightSense distance sensor. It uses time-of-flight (TOF) readings of infrared laser light to precisely measure distances of multiple targets across a grid of multiple zones, allowing you to generate a depth map with up to 8×8 resolution and 4 m range. Relative to older similar sensors, such as the VL53L5CX, the VL53L8CX also offers improved performance in ambient light and adds an SPI interface that can significantly speed up initialization and data acquisition. Since it has the same FOV and multi-zone capability, you can think of the VL53L8CX as basically an upgraded version of the VL53L5CX.

Visualization of VL53L8CX and VL53L5CX sensing a person standing against a wall about 2.7 m away. The VL53L8CX gives more accurate measurements with higher confidence (indicated with green).

Compared to sensors that only give a 1D measurement, the VL53L8CX does demand more from a microcontroller to support its operation as a 3D lidar. Initializing the sensor through I²C or SPI and processing its data requires a lot of RAM and program memory, so it is not practical to use the VL53L8CX with most 8-bit MCUs like the Arduino Uno. We found that the Raspberry Pi Pico’s RP2040 microcontroller worked well for interfacing with the VL53L8CX, and other similarly powerful 32-bit controllers like an ESP32 should also work.

With the release of this module, we now have seven pin-compatible carriers for ST’s various FlightSense time-of-flight sensors:


VL6180X
carrier

VL53L0X
carrier

VL53L1X
carrier

VL53L3CX
carrier

VL53L5CX
carrier

VL53L7CX
carrier

VL53L8CX
carrier
Maximum range:(1) 60 cm 200 cm 400 cm 500 cm 400 cm 350 cm 400 cm
Minimum range: ~1 cm ~3 cm 4 cm 1 cm 2 cm 2 cm 2 cm
Field of view: 25° 25° 15° to 27° diagonal,
program­mable
25° 65° diagonal,
up to 8×8 zones
90° diagonal,
up to 8×8 zones
65° diagonal,
up to 8×8 zones
Other features: ambient light sensing,
low memory footprint(2)
low memory footprint(2) low memory footprint(2) multi-target detection multi-target detection multi-target detection multi-target detection,
improved performance
in ambient light
Maximum update rate:(1) ~150 Hz 50 Hz 100 Hz 125 Hz 60 Hz 60 Hz 60 Hz
Operating voltage range: 2.6 V to 5.5 V 2.5 V to 5.5 V 3.2 V to 5.5 V
Regulator voltage: 2.8 V 3.3 V 1.8 V and 3.3 V
Typical active-ranging
supply current:
25 mA 20 mA 20 mA 20 mA 100 mA 100 mA 100 mA
Peak supply current: 40 mA 40 mA 40 mA 40 mA 150 mA 150 mA 150 mA
Interface: I²C I²C, SPI
Dimensions: 0.5″ × 0.7″ 0.5″ × 0.9″
1-piece price: $13.49 $14.95 $18.95 $16.95 $19.95 $19.95 $24.95
1 Effective range and update rate depend on configuration, target, and environment.
2 Suitable for use with typical 8-bit MCUs.

We now offer UV printing and more metal laser cutting capabilities!

Posted by Patrick on 13 December 2023

I’m excited to share some exciting improvements to our Custom Laser Cutting Service: a greatly expanded range of metal cutting capabilities and UV printing!

Metal laser cutting

The last time we made a blog post about our laser cutting capabilities (over six years ago now), our most powerful machine was a 400 W CO2 laser cutter that could cut materials including plastics and woods up to 1″ (25.4 mm) thick, as well as steel up to 0.060″ (1.5 mm) thick. But we still weren’t satisfied with our metal cutting capabilities, so in the time since then, we have added an IPG Photonics LaserCube with a 3000 W fiber laser. The LaserCube is specifically designed to cut metals, enabling us to work with a wider variety of metals in thicknesses up to 1/4″ (6.35 mm).

Jan briefly mentioned the LaserCube in a blog post back in March 2020 just after we finished installing it—and right as the world was locking down in response to the COVID-19 pandemic. With the disruptions first from pandemic and then from the subsequent global parts shortages, almost all of our efforts went into keeping daily operations going, and developing new processes for fundamentally new equipment like the LaserCube got put on the back burner. Fortunately, things have been gradually getting back to normal and we are now ready to officially announce the new metal cutting capabilities the LaserCube enables!

We can now cut:

  • Steel up to 1/4″ (6.35 mm) thick
  • Aluminum up to 1/4″ (6.35 mm) thick
  • Brass up to 1/8″ (3.18 mm) thick
  • Bronze up to 1/8″ (3.18 mm) thick

Correspondingly, we have added 5052 and 6061 aluminum to our regularly-stocked metals, joining 304 stainless steel and 1018 mild steel. We typically have sheets up to 24″ × 48″ (61 cm × 122 cm), but we can also order different metals/alloys or cut materials provided by customers up to 48″ × 48″. Additionally, since getting the LaserCube set up, we have started regularly using nitrogen (N2) as an assist gas, which helps cut parts with less discoloration and cleaner edges.

Laser-cut stainless steel.

Laser-cut aluminum.

Laser-cut brass.

UV printing

Our newest equipment is a Mimaki UJF-6042 MkII e UV printer, which lets us add vibrant and colorful labels, logos, photos, and artwork to your laser-cut parts. It can print with 1200 DPI resolution to an area up to 24″ × 16.5″ (61 cm × 42 cm), and the UV-cured ink adheres to many of the materials we laser cut, including plastics, wood, and yes, metal!

Our printer has inks for CMYK colors, plus a few special inks:

  • White ink for printing vibrant colors on non-white materials
  • Primer ink for helping the print better adhere to the material
  • Clear ink for adding a layer of protection to the print

These different types of ink can be layered in various combinations for different effects.

We especially like printing on transparent materials, like clear acrylic, since there are so many ways you can print different layers of ink to create unique parts. For example, we can make opaque images visible from either side of the part by printing a layer of white sandwiched by two color layers like we did for these personalized Christmas tree ornaments.

Laser-cut and UV-printed acrylic Christmas tree ornaments with two color layers for double-sided appearance.

Alternatively, by strategically skipping the white layer in some areas of the print we can make transparent colorful parts that resemble stained glass.

Laser-cut and UV-printed acrylic part with stained glass appearance.

Getting a quote

You can submit a quote request for laser-cut metal parts, laser-cut parts with UV-printed artwork, or other types of laser-cut and engraved parts through our Custom Laser Cutting Service page. To get started, we recommend downloading one of our templates below, which already have the different layers set up.

CorelDRAW (340k cdr) Adobe Illustrator (7MB ai) Inkscape (457k svg)

First-surface view of template example A on clear acrylic.

Second-surface view of template example A on clear acrylic.

Front of template example B on clear acrylic (gray background).

Back of template example B on clear acrylic (gray background).


Then, all you will need to do is add your artwork to the appropriate layer, save it, and submit a quote request!


For more detailed information about all of our capabilities and how to set up your files to make the process as smooth as possible, check out our Custom Laser Cutting Guide.

Share with us

We are excited to see what parts you design and how they get used in your projects! When you get your parts, consider posting some pictures in the Share Your Projects category of our forum. If you are still brainstorming ideas for your next project, our forum and blog posts tagged laser cutting are a great places to find inspiration.

New product: Zumo 2040 Robot!

Posted by Kevin on 22 November 2023

We’re happy to announce the release of the Zumo 2040, our newest RP2040-based robot built on our Zumo tracked chassis!

The Zumo started out as just that chassis: a simple mechanical base designed to be the foundation of a small tracked robot (and the right size for Mini-Sumo competitions). Later, we made the Zumo Robot Kit for Arduino that lets you build a complete robot with just the addition of an Arduino board, and a while after that, we released the Zumo 32U4 featuring a main board with an integrated AVR microcontroller.

Pololu Zumo chassis kit, assembled top view, shown with motors and original white sprockets.

Assembled Zumo robot for Arduino with an Arduino Uno (with original white sprockets).

Assembled Zumo 32U4 robot.

This new Zumo 2040 is the next big step in the evolution of the Zumo family, swapping out the Zumo 32U4’s 8-bit processor for a Raspberry Pi RP2040, a 32-bit dual-core Arm Cortex-M0+ microcontroller running at 125 MHz, along with 16 MB (128 Mbit) of flash memory. The more powerful processor (the same as on the Raspberry Pi Pico) enhances both what the Zumo can do and how you can work with it.

Assembled Zumo 2040 robot.

We particularly like how easy it is to get started programming the Zumo 2040 with MicroPython: just like with our 3pi+ 2040 Robot, you can simply connect the Zumo to a computer with a USB-C cable and start editing the included example Python programs with a text editor.

MicroPython drive showing Zumo 2040 demo programs.

The blink.py demo program in a text editor.

There are lots of pre-loaded examples that demonstrate how to use the various features on the Zumo 2040. Here’s one that uses the Zumo’s proximity sensors to locate and turn to face an opponent or other object (in this case, a 3pi+):


Although I summed up the history of the Zumo platform in a few major milestones above, that doesn’t really tell the whole story; there have been other smaller changes along the way (both accompanying and between the big releases) that have made it more of a continual process of improvement. For example, although the Zumo originally came with the white sprockets that you see in some of those pictures, we now ship the chassis and all of the robots and kits with black spoked sprockets that make assembly and disassembly easier (and look cooler). And a couple years ago, we revised the Zumo 32U4 with a better display (in the form of the Zumo 32U4 OLED), an upgrade that has carried over to this new Zumo.

The Zumo 2040’s new I2C0 connector is one such smaller improvement, but it’s something that I hope will make a difference when it comes to expanding the robot with additional electronics. This is a 4-pin JST SH-compatible connector that provides access to the RP2040’s I2C0 bus, and it has a pinout compatible with Sparkfun’s Qwiic and Adafruit’s STEMMA QT connection systems, so that should make it easier to add I²C sensors and other devices to the Zumo.

The I2C0 connector on the Zumo 2040.

Heat-seeking Zumo? An IR camera plugged into the Zumo 2040’s I2C0 connector enables thermal imaging capabilities.

The Zumo 2040 robot is available as a kit (with motors not included so you can select your own to customize performance) or as a fully assembled robot with your choice of 50:1, 75:1, or 100:1 motor options.

New Products

7.5V, 3A Step-Down Voltage Regulator D30V30F7
Graphical OLED Display: 128x64, 1.3", White Pixels, SPI, Black PCB
4.2-15V, 3A Fine-Adjust Step-Down Voltage Regulator w/ Adjustable Low-Voltage Cutoff D30V30MASCMA
ACS72981LLRATR-050B5 Current Sensor Compact Carrier -50A to +50A, 5V
CT433-HSWF50DR TMR Current Sensor Compact Carrier 0A to 50A, 3.3V
75:1 Micro Metal Gearmotor HP 6V with 12 CPR Encoder, Side Connector
ACS72981LLRATR-050U3 Current Sensor Compact Carrier 0A to 50A, 3.3V
VL53L8CX Time-of-Flight 8×8-Zone Distance Sensor Carrier with Voltage Regulators, 400cm Max
ACS72981KLRATR-150U5 Current Sensor Large Carrier 0A to 150A, 5V
ACS71240KEXBLT-010B3 Current Sensor Carrier -10A to +10A, 3.3V
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors