Posts tagged "new products"

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

New product: Romi 32U4 Control Board

Posted by Paul on 7 February 2017
Tags: new products

What do you need to turn a Romi chassis into a functioning robot? Here are some Romi projects from the community, as well a couple of our example builds:

A variety of controllers can be used with the Romi, but until now you have had to figure out lots of wiring to connect everything together. You will always need some wiring to connect your own sensors or other devices, but we have been trying to make it easier to get started, beginning with the Romi power distribution board and motor driver board, which help simplify some of the more difficult parts. Our new Romi 32U4 Control Board is the culmination of this product line: a complete controller solution for the Romi that integrates power, motor control, and an Arduino-compatible microcontroller.

Romi power distribution board, motor driver board,
and the new Romi 32U4 Control Board.

Here is how it looks when connected to a Romi Chassis with motors and encoders plugged in, as well as the optional LCD:

Features of the Romi 32U4 Control Board

Pinout diagram of the Romi 32U4 Control Board (ATmega32U4 pinout, peripherals, and board power control).

  • Reverse-protected battery power switch circuit
  • Powerful 5 V, 2 A switching regulator
  • Dual 1.8 A DRV8838 motor drivers
  • ATmega32U4 microcontroller with Arduino-compatible USB bootloader
  • 16 free general-purpose I/O ports including 10 analog inputs
  • LCD connector
  • Buzzer
  • Three user buttons
  • Five indicator LEDs (2 for power, 3 user-controllable)
  • Battery voltage monitoring
  • Quadrature encoder inputs
  • Four general-purpose level shifters
  • 3-axis I²C accelerometer
  • 3-axis I²C gyroscope
  • Raspberry Pi connector with I²C interface and HAT EEPROM

Raspberry Pi interface

Microcontrollers like the ATmega32U4 are great for fast, timing-sensitive operations such as reading sensors or driving servos, but their computing power is very limited compared to devices like the Raspberry Pi. That is why we built a Raspberry Pi interface into this board: to give you the option to expand your robot beyond what is possible with a microcontroller. This could be useful for anything from advanced applications like computer vision or room mapping to simply letting your robot share status updates on Twitter. Here is a Romi assembled with a Raspberry Pi:

When connected, the control board supplies power to the Raspberry Pi and connects to it as an I²C slave device. We include the ID EEPROM required by the HAT specification, though we have not found it particularly useful, so we ship it blank and unlocked for you to experiment with.

Our Arduino library gives example code for I²C connectivity, and you can check out our Raspberry Pi tutorial for the A-Star 32U4 Robot Controller, which we will be updating for the Romi 32U4 Control board.

For more information about the Romi 32U4 Control Board or to order, please see its product page.

New 20D mm metal gearmotors

Posted by Ben on 16 January 2017
Tags: new products

Our vast assortment of metal gearmotors has gotten even bigger! With over 100 micro metal gearmotor options and nearly 100 25D mm metal gearmotor versions to choose from, the next step seemed clear: expand our offering of 20D mm metal gearmotors, which fit nicely between the smaller micro metal gearmotors and larger 25D mm metal gearmotors. We have replaced our initial four 20D mm options with twelve entirely new gear ratios that feature more efficient gearboxes and much longer output shafts.

Original 20D mm metal gearmotor with shorter output shaft.

New 20D mm metal gearmotor with longer output shaft.

The motor portion is unchanged, and we now also offer versions with an extended motor shaft that rotates at the same speed as the input to the gearbox and can be used to add an encoder, such as our new magnetic encoder for 20D mm metal gearmotors, for closed-loop speed or position control.

20D mm metal gearmotor with extended motor shaft.

Magnetic Encoder Kit for 20D mm Metal Gearmotors assembled on a 20D mm metal gearmotor with extended motor shaft.

The table below shows our current offering of 20D mm metal gearmotors:

@ Rated Voltage
@ Rated Voltage
Stall Torque
@ Rated Voltage

(Gearbox Only)

(Gearbox & Motor)
6 V 3.2 A 560 RPM 30 oz-in 25:1 6V 25:1 6V dual-shaft
450 RPM 35 oz-in 31:1 6V 31:1 6V dual-shaft
225 RPM 60 oz-in 63:1 6V 63:1 6V dual-shaft
180 RPM 75 oz-in 78:1 6V 78:1 6V dual-shaft
140 RPM 90 oz-in 100:1 6V 100:1 6V dual-shaft
110 RPM 100 oz-in 125:1 6V 125:1 6V dual-shaft
90 RPM 115 oz-in 156:1 6V 156:1 6V dual-shaft
70 RPM 125 oz-in 195:1 6V 195:1 6V dual-shaft
55 RPM 140 oz-in 250:1 6V 250:1 6V dual-shaft
45 RPM 150 oz-in 313:1 6V 313:1 6V dual-shaft
35 RPM 160 oz-in 391:1 6V 391:1 6V dual-shaft
29 RPM 170 oz-in 488:1 6V 488:1 6V dual-shaft

We also have 12V versions on the way, so stay tuned for more information!

New product: Raspberry Pi Model A+ 512MB RAM

Posted by Ben on 16 November 2016
Tags: new products

We are now carrying the Raspberry Pi Model A+ 512MB, which is just like the previous Model A+ but with double the RAM, so it also works with our various Raspberry Pi expansion boards. In particular, it can be combined with our A-Star 32U4 Robot Controller with Raspberry Pi Bridge to make a powerful control center for a small robot (check out this tutorial).

A-Star 32U4 Robot Controller SV with Raspberry Pi Bridge on a Raspberry Pi Model A+.

And speaking of small robots, stay tuned for some fun new products that will also work with the Raspberry Pi!

New products: Addressable RGB LED strips based on the SK6812

Posted by David on 2 November 2016
Tags: new products

We are now selling new addressable RGB LED strips based on the SK6812. These LED strips replace our older WS2812B LED strips. Like the WS2812B, the SK6812 is an RGB LED with an integrated driver that allows independent control over a chain of LEDs using just one I/O line. The main difference between the two drivers is that the SK6812 has constant current control capabilities that let it have a voltage-independent color and brightness over a wide range of voltages, so any voltage drop due to long power lines is less of a concern.

LED side of the SK6812-based addressable LED strips, showing 30 LEDs/m (top), 60 LEDs/m (middle), and 144 LEDs/m (bottom).

We offer six different kinds of SK6812 LED strip with different LED densities and lengths. Our strips with 30 LEDs per meter are available in three lengths:

We also offer denser SK6812 LED strips that have 60 LEDs per meter:

Our highest density strip has 144 LEDs per meter:

We provide LED strip example code for the Arduino, AVR, and mbed microcontroller platforms. More information about the LED strips and how to use them can be found on the LED strip product page.

Controlling an addressable RGB LED strip with an Arduino and powering it from a 5V wall power adapter.

New D24V150Fx 15A step-down voltage regulator family — our highest-power regulators yet!

Posted by Claire on 1 November 2016
Tags: new products

I am excited to announce that we just released our highest power regulators ever. The new D24V150Fx family of step-down regulators includes units with 3.3 V, 5 V, 6 V, 7.5 V, 9 V, and 12 V outputs and can output currents of around 15 A! With all of the output voltages available, the D24V150Fx family of regulators is great for a variety power-hungry projects like running servos or our metal gearmotors and supplying large LED displays.

Pololu Step-Down Voltage Regulator D24V150Fx in a breadboard, assembled with terminal blocks and male headers.

Pololu Step-Down Voltage Regulator D24V150Fx, bottom view with dimensions.

The maximum continuous output currents for all the members of the D24V150Fx family are shown in the graph below. You can see that the available output current is generally a little higher for the lower-voltage versions than it is for the higher-voltage versions, and it decreases as the input voltage increases.

These regulators accept input voltages up to 40 V and have typical efficiencies between 80% and 95%. Integrated reverse-voltage protection, over-current protection, over-temperature shutoff, undervoltage lockout, and soft-start features make these regulators robust, and a power good output can be used to monitor the output voltage.

See the product pages for any of the D24V150Fx regulators for more information on these new regulators, or visit our voltage regulator category to see all of our regulator options.

New versions of our 38 kHz IR proximity sensors

Posted by Ben on 17 October 2016
Tags: new products

We have released slightly updated (irs05b) versions of our 38 kHz IR proximity sensors and discontinued the previous (irs05a) versions. The main changes are to the locations of the IR emitter and receiver, which have been moved away from the edge of the board. This results in better shielding from the PCB itself, which improves performance. Also, the front edge is now routed rather than scored to provide a cleaner edge that also slightly improves the sensor performance and consistency.

Like the originals, these new sensors are available in high-brightness and low-brightness versions with typical sensing ranges up to around 24″ (60 cm) and 12″ (30 cm), respectively. The new versions have the same dimensions and pinouts as the originals, so they can be used as drop-in replacements for any applications that are not dependent on the original component locations.

UM7-LT and UM7 orientation sensors now from Redshift Labs

Posted by Kevin on 13 October 2016
Tags: new products

The UM7-LT and UM7 orientation sensors, originally developed by CH Robotics, are now being manufactured and supported by Redshift Labs. The updated versions of these sensors are now available from Pololu.

UM7-LT orientation sensor.

UM7 orientation sensor with included cable and U.S. quarter for size reference.

The UM7 is an Attitude and Heading Reference System (AHRS) that takes measurements from its three-axis accelerometer, gyro, and magnetometer and calculates orientation estimates with its integrated microcontroller. It is available with an enclosure as the UM7 or without one as the UM7-LT. Aside from a few updated components and the addition of a conformal coating on the UM7-LT, these sensors are functionally identical to the original versions produced by CH Robotics.

For more information about the orientation sensors, see their product pages below.

New products: XYZrobot Bolide humanoid robot DIY kit and A1-16 smart servo

Posted by Brandon on 16 September 2016
Tags: new products

We are now offering two new products from XYZrobot: the Bolide Y-01 advanced humanoid robot DIY kit and the A1-16 smart servo.

The Bolide Y-01 DIY kit from XYZrobot comes with all of the components needed to build this advanced humanoid robot, including a Bluetooth controller, an Arduino-compatible ATmega1280 microcontroller, sensors, and 18 A1-16 smart servos. The ATmega1280 microcontroller comes preprogrammed to perform a range of complex movements, including dancing, walking and standing up in response to commands from the included Bluetooth remote or a smartphone or tablet running the XYZrobot app. The control board includes a three-axis accelerometer for maintaining postural stability and detecting falls, and the robot also has a distance sensor in its chest that can detect objects in front of it. For those interested in expanding the capabilities of this robot beyond the preprogrammed routines, the Bolide Y-01 control board can be programmed with the Arduino IDE and the XYZrobot Editor software. You can find more details about the Bolide Y-01 advanced humanoid robot DIY kit on its product page.

We are perhaps even more excited about carrying the A1-16 smart servos separately. These specialty servos are well suited for applications such as humanoid robots, hexapod robots, and robotic arms that require strong and complex actuation. Unlike the usual RC hobby servos, these servos are not only capable of 360° continuous rotation, but they also offer position control over an effective 330° range. To achieve this kind of motion, they use a TTL serial interface, which also allows them to be daisy chained and controlled from the same serial bus (this is their only method of control, so they will not work with standard RC receivers and servo controllers). In addition, these smart servos provide additional feedback such as position, speed, and temperature! The four-color LED featured on each servo is used as a visual error indicator by default, which is really handy to quickly determine if servos in a chain are experiencing a problem. Alternatively, this LED can be manually controlled through the serial interface. See the A1-16 smart servo product page for more information about this feature-packed servo.

New product: FEETECH FS90 Micro Servo

Posted by Paul on 15 September 2016
Tags: new products

We are now carrying the FEETECH FS90 micro servo. At a weight of only 9 g and less than inch long, this servo is great for actuating tiny mechanisms. We also carry the continuous-rotation version of this servo, the FEETECH FS90R.

Video: Romi chassis assembly

Posted by Ben on 13 September 2016
Tags: new products

We made a short video showing how the parts of our new Romi chassis fit together:

New Products

313:1 Metal Gearmotor 20Dx46L mm 6V with Extended Motor Shaft
Magnetic Encoder Pair Kit for 20D mm Metal Gearmotors, 20 CPR, 2.7-18V
156:1 Metal Gearmotor 20Dx44L mm 6V with Extended Motor Shaft
RoboClaw 2x45A Motor Controller (V5D, pin header I/O)
25:1 Metal Gearmotor 20Dx41L mm 6V with Extended Motor Shaft
Romi 32U4 Control Board
488:1 Metal Gearmotor 20Dx46L mm 6V with Extended Motor Shaft
Magnetic Encoder Disc for 20D mm Metal Gearmotors, OD 9.7 mm, ID 2.0 mm, 20 CPR (Bulk)
RoboClaw 2x30A Motor Controller (V5D)
RoboClaw 2x15A Motor Controller (V5D)
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors