Pololu Blog »
More new current sensors!
![]() |
![]() |
We have released even more current sensors! As with our assortment of other active and preferred current sensors, these new boards are based on Allegro current-sensing ICs and have analog outputs with voltage proportional to the AC or DC current passing through the sensor while offering full electrical isolation of the current path from the sensor’s electronics. This isolation allows them to be inserted anywhere in the current path, including on the high side, and because the current path resistance is on the order of 2 mΩ or less, there is minimal effect on the rest of the system. Here’s a quick summary of the new sensor families:
Allegro ACS37041/ACS37042
These low-cost bidirectional current sensors have ranges of -10 A to +10 A or -30 A to +30 A with dedicated versions for 3.3 V and 5 V systems. The sensor itself is a tiny 5-pin SOT-23 package, which allows for an extra-compact, “micro” carrier board that is approximately 1/5th the size of our next smallest current sensor carrier. We also have versions in our standard “compact” form factor, which for these sensors end up being the larger of the two form factors available. These larger versions can accommodate a wider variety of connectors and thicker wires, and they have the same overall dimensions and current-path mounting hole arrangements as our other “compact” current sensor carriers.
|
|
||
|
|
The ACS37041 and ACS37042 are almost identical, with the key difference being that the ACS37042 has a higher isolation voltage rating. To support operation at higher voltages, the carrier boards for the ACS37042 versions have routed slots for higher creepage distances along the PCB surface. The pictures above show the ACS37041 carriers on the left and the ACS37042 carriers on the right.
The following table shows all of our ACS37041 and ACS37042 carrier options:
Pololu Item # |
Part Suffix | Isolation Rating 1 |
Supply Voltage | Current Range |
Sensitivity (mV/A) |
Zero Point | Size | PCB Details |
Min PCB Creepage 2 |
Price | |
---|---|---|---|---|---|---|---|---|---|---|---|
ACS3704x Micro Carriers | |||||||||||
![]() ACS37041 |
#5440 (coming June 2025) | 010B3 | 100 VRMS | 3.0 V to 3.6 V | ±10 A | 132 | 1.65 V | 0.3″×0.4″ 7.6×10.2 mm |
2 layers, 1-oz copper |
1.6 mm | $3.65 |
#5441 | 030B3 | ±30 A | 44 | ||||||||
#5442 | 010B5 | 4.5 V to 5.5 V | ±10 A | 200 | 2.5 V | ||||||
#5443 | 030B5 | ±30 A | 66.7 | ||||||||
![]() ACS37042 |
#5450 | 010B3 | 285 VRMS | 3.0 V to 3.6 V | ±10 A | 132 | 1.65 V | 2.0 mm | $4.19 | ||
#5451 | 030B3 | ±30 A | 44 | ||||||||
#5452 (coming June 2025) | 010B5 | 4.5 V to 5.5 V | ±10 A | 200 | 2.5 V | ||||||
#5453 (coming June 2025) | 030B5 | ±30 A | 66.7 | ||||||||
ACS3704x Compact Carriers | |||||||||||
![]() ACS37041 |
#5444 (coming June 2025) | 010B3 | 100 VRMS | 3.0 V to 3.6 V | ±10 A | 132 | 1.65 V | 0.7″×0.8″ 17.8×20.3 mm |
2 layers, 2-oz copper |
1.6 mm | $3.95 |
#5445 | 030B3 | ±30 A | 44 | ||||||||
#5446 | 010B5 | 4.5 V to 5.5 V | ±10 A | 200 | 2.5 V | ||||||
#5447 | 030B5 | ±30 A | 66.7 | ||||||||
![]() ACS37042 |
#5454 | 010B3 | 285 VRMS | 3.0 V to 3.6 V | ±10 A | 132 | 1.65 V | 3.0 mm | $4.49 | ||
#5455 | 030B3 | ±30 A | 44 | ||||||||
#5456 (coming June 2025) | 010B5 | 4.5 V to 5.5 V | ±10 A | 200 | 2.5 V | ||||||
#5457 (coming June 2025) | 030B5 | ±30 A | 66.7 | ||||||||
Note 1: IC component rating per manufacturer datasheet. | |||||||||||
Note 2: Minimum creepage along PCB surface based on layout design only. Other creepage distances, e.g. along the body of the component, may be lower. |
Allegro ACS37030
These sensors measure bidirectional currents from -20 A to +20 A or -65 A to +65 A, and they are intended for 3.3 V systems. What makes them really special are their extra-low (40 ns typical) response times and extra-high 5 MHz bandwidth, which are made possible by their combined use of two sensing technologies: a Hall effect sensor captures DC and low-frequency current information and an inductive coil captures high-frequency signals. The following table shows our available options:
Pololu Item # |
Part Suffix | Supply Voltage | Current Range |
Sensitivity (mV/A) |
Zero Point | Size | PCB Details |
Price | |
---|---|---|---|---|---|---|---|---|---|
ACS37030 Compact Carriers | |||||||||
![]() |
#5230 | 020B3 | 3.0 V to 3.6 V | ±20 A | 66 | 1.65 V | 0.7″×0.8″ 17.8×20.3 mm |
2 layers, 2-oz copper |
$9.95 |
#5231 (coming July 2025) | 040B3 | ±40 A | 33 | ||||||
#5232 | 065B3 | ±65 A | 20.3 | ||||||
ACS37030 Large Carriers | |||||||||
![]() |
#5235 | 065B3 | 3.0 V to 3.6 V | ±65 A | 20.3 | 1.65 V | 1.4″×1.2″ 35.6×30.5 mm |
6 layers, 2-oz copper |
$12.95 |
#5236 (coming July 2025) | 040B3 | ±40 A | 33 |
These sensors are available in our standard compact form factor, which is great for use in space-constrained systems, and the higher-current versions are also available in our standard large form factor, which supports support more connection options for higher-current applications. The large carriers offer better thermal dissipation thanks to their 6-layer PCBs and increased surface area, and the holes and slots for the current path connection points accommodate thicker wires along with a variety of high-current connectors (e.g. lugs, solderless ring terminals, and 4-pin terminal blocks). Having these standard form factors available makes it easier to swap among different boards to compare different sensor ICs, and having different form factors available for the same sensor IC also makes it possible to evaluate how things like PCB area and the number of copper layers affects the sensor’s thermal performance
All our current sensors
These new additions bring us up to 96 total active and preferred current sensor carriers! Here’s a handy table comparing them all:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACS3704x Current Sensor Micro Carriers |
ACS3704x Current Sensor Compact Carriers |
ACS711 Current Sensor Carriers |
ACS71240 Current Sensor Carriers |
ACS724 Current Sensor Carriers |
ACS37220 Current Sensor Compact Carriers |
ACS37220 Current Sensor Large Carriers |
ACS37030 Current Sensor Compact Carriers |
ACS37030 Current Sensor Large Carriers |
ACS72981 Current Sensor Compact Carriers |
ACS72981 Current Sensor Large Carriers |
CT432/CT433 TMR Current Sensor Compact Carriers |
CT432/CT433 TMR Current Sensor Large Carriers |
|
Allegro Sensor | ACS3704x | ACS711KEXT | ACS71240 | ACS724LLCTR | ACS37220 | ACS37030 | ACS72981xLR | CT432/CT433 | |||||
Sensing technology | Hall effect | Hall effect | Hall effect | Hall effect | Hall effect | Hall effect + inductive coil | Hall effect | XtremeSense™ TMR (tunneling magnetoresistance) |
|||||
Logic voltage range | 3.3V versions: 3.0–3.6 V 5V versions: 4.75–5.5 V |
3.0–5.5 V | 3.3V ver: 3.0–3.6 V 5V ver: 4.5–5.5 V |
4.5–5.5 V | 3.3V versions: 3.15–3.45 V 5V versions: 4.5–5.5 V |
3.0–3.6 V | 3.3V versions: 3.0–3.6 V 5V versions: 4.5–5.5 V |
3.3V versions: 3.0–3.6 V 5V versions: 4.75–5.5 V |
|||||
Family current range | 10–30 A | 15.5–31 A | 10–50 A | 2.5–50 A | 100–200 A | 20–65 A | 50–200 A | 20–70 A | |||||
Current range/ sensitivity of individual versions |
ACS37041: 3.3V Bidirectional: ±30 A / 44 mV/A 5V Bidirectional: ±10 A / 200 mV/A ±30 A / 66.7 mV/A ACS37042: 3.3V Bidirectional: ±10 A / 132 mV/A ±30 A / 44 mV/A |
ACS37041: 3.3V Bidirectional: ±30 A / 44 mV/A 5V Bidirectional: ±10 A / 200 mV/A ±30 A / 66.7 mV/A ACS37042: 3.3V Bidirectional: ±10 A / 132 mV/A ±30 A / 44 mV/A |
Bidirectional:(1) ±15.5 A / 90 mV/A ±31 A / 45 mV/A |
3.3V Bidirectional: ±10 A / 132 mV/A ±30 A / 44 mV/A ±50 A / 26.4 mV/A 5V Bidirectional: ±10 A / 200 mV/A ±30 A / 66 mV/A ±50 A / 40 mV/A 5V Unidirectional: 0–50 A / 80 mv/A |
5V Bidirectional:(2) ±2.5 A / 800 mV/A ±5 A / 400 mV/A ±10 A / 200 mV/A ±20 A / 100 mV/A ±30 A / 66 mV/A ±50 A / 40 mV/A 5V Unidirectional:(2) 0–5 A / 800 mv/A 0–10 A / 400 mv/A 0–20 A / 200 mv/A 0–30 A / 133 mV/A |
3.3V Bidirectional: ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A 5V Bidirectional: ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A |
3.3V Bidirectional: ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A 5V Bidirectional: ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A |
3.3V Bidirectional: ±20 A / 66 mV/A ±65 A / 20.3 mV/A |
3.3V Bidirectional: ±65 A / 20.3 mV/A |
3.3V Bidirectional:(1) ±50 A / 26.4 mV/A ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A ±200 A / 6.6 mV/A 3.3V Unidirectional:(1) 0–50 A / 52.8 mv/A 0–100 A / 26.4 mv/A 0–150 A / 17.6 mv/A 0–200 A / 13.2 mv/A 5V Bidirectional:(2) ±50 A / 40 mV/A ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A 5V Unidirectional:(2) 0–50 A / 80 mv/A 0–100 A / 40 mv/A 0–150 A / 26.7 mv/A |
3.3V Bidirectional:(1) ±50 A / 26.4 mV/A ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A ±200 A / 6.6 mV/A 3.3V Unidirectional:(1) 0–50 A / 52.8 mv/A 0–100 A / 26.4 mv/A 0–150 A / 17.6 mv/A 0–200 A / 13.2 mv/A 5V Bidirectional:(2) ±50 A / 40 mV/A ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A 5V Unidirectional:(2) 0–50 A / 80 mv/A 0–100 A / 40 mv/A 0–150 A / 26.7 mv/A |
3.3V Bidirectional: ±20 A / 50 mV/A ±30 A / 33.3 mV/A ±50 A / 20 mV/A ±70 A / 14.3 mV/A 3.3V Unidirectional: 0–20 A / 100 mv/A 0–30 A / 66.7 mv/A 0–50 A / 40 mv/A 0–65 A / 30.8 mv/A 5V Bidirectional: ±20 A / 100 mV/A ±30 A / 66.7 mV/A ±50 A / 40 mV/A ±65 A / 30.8 mV/A 5V Unidirectional: 0–20 A / 200 mv/A 0–30 A / 133.3 mv/A 0–50 A / 80 mv/A 0–70 A / 57.1 mv/A |
3.3V Bidirectional: ±50 A / 20 mV/A ±70 A / 14.3 mV/A 3.3V Unidirectional: 0–50 A / 40 mv/A 0–65 A / 30.8 mv/A 5V Bidirectional: ±50 A / 40 mV/A ±65 A / 30.8 mV/A 5V Unidirectional: 0–50 A / 80 mv/A 0–70 A / 57.1 mv/A |
IC current path resistance | 1.6 mΩ | 0.6 mΩ | 0.6 mΩ | 0.6 mΩ | 0.1 mΩ | 0.7 mΩ | 0.2 mΩ | 1 mΩ | |||||
PCB | 2 layers, 1-oz copper |
2 layers, 2-oz copper |
2 layers, 2-oz copper |
2 layers, 2-oz copper |
2 layers, 2- or 4-oz copper(4) |
2 layers, 2-oz copper |
6 layers, 2-oz copper |
2 layers, 2-oz copper |
6 layers, 2-oz copper |
6 layers, 2-oz copper |
6 layers, 2-oz copper |
2 or 4 layers(5), 2-oz copper |
6 layers, 2-oz copper |
Max bandwidth | 150 kHz | 100 kHz | 120 kHz | 120 kHz(3) | 150 kHz | 5 MHz | 250 kHz | 1 MHz | |||||
Size | 0.3″ × 0.4″ | 0.7″ × 0.8″ | 0.7″ × 0.8″ | 0.7″ × 0.8″ | 0.7″ × 0.8″ | 0.7″ × 0.8″ | 1.4″ × 1.2″ | 0.7″ × 0.8″ | 1.4″ × 1.2″ | 0.7″ × 0.8″ | 1.4″ × 1.2″ | 0.8″ × 1.1″ | 1.4″ × 1.2″ |
Overcurrent fault output |
User-configurable threshold | ||||||||||||
Common-mode field rejection | |||||||||||||
Nonratiometric output | |||||||||||||
1-piece price | $3.65 | $3.95 | $4.35 | $4.75 | $8.95 – $10.49 | $5.95 | $8.95 | $9.95 | $12.95 | $11.95 | $14.95 | $10.95 | $14.95 |
Note 1: Sensitivity when Vcc = 3.3 V; actual sensitivity is ratiometric (i.e. it is proportional to Vcc).
Note 2: Sensitivity when Vcc = 5 V; actual sensitivity is ratiometric (i.e. it is proportional to Vcc).
Note 3: Bandwidth can be reduced by adding a filter capacitor.
Note 4: 50A version uses 4-oz copper PCB; all other versions use 2-oz copper.
Note 5: 50A and higher versions use a 4-layer PCB; all other versions use a 2-layer PCB.
You can also use the following selection box to see all these options sorted by current range:
Alternatives available with variations in these parameter(s): current range Select variant…