Posts by Kevin (Page 2)

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

New product: CH Robotics UM7-LT orientation sensor

Posted by Kevin on 25 June 2014
Tags: new products
New product: CH Robotics UM7-LT orientation sensor

We’re now selling the UM7-LT orientation sensor, the latest Attitude and Heading Reference System (AHRS) from CH Robotics. The UM7 takes advantage of newer sensor technology to offer improved performance compared to its predecessor, the UM6, despite its reduced cost.

Like earlier CH Robotics AHRS modules, the UM7 contains an onboard microcontroller that combines data from its three-axis accelerometer, gyro, and magnetometer to produce orientation estimates 500 times a second. The attitude and heading information, available in the form of Euler angles or quaternions, can either be streamed automatically or provided upon request through a TTL serial interface.

Power and serial connections can be made to the UM7-LT through a five-pin connector and an included matching cable, and expansion headers provide additional interfaces like SPI and a secondary UART that can be connected to an external GPS module. The free CHR Serial Interface software makes it easy to visualize data from the UM7 and configure its settings.

For more information about the UM7-LT, see its product page. A version of the UM7 with an enclosure, similar to the enclosed UM6, is expected to be available in the next few months.

New product: TPS2113A Power Multiplexer Carrier with USB Micro-B Connector

Posted by Kevin on 20 June 2014
Tags: new products
New product: TPS2113A Power Multiplexer Carrier with USB Micro-B Connector

Earlier this year we released a carrier for the Fairchild FPF1320, a power multiplexer that can switch between two separate power supplies, such as USB and a battery-powered 5 V regulator. The FPF1320 is great for transitioning between power sources based on an external selection signal, but by itself, it is not ideal for applications like a USB-powered microcontroller: it lacks a voltage sensor that would enable the switching to be both seamless and automatic. (By default, our carrier allows the output voltage to drop below 1.5 V whenever it switches from its preferred to alternate power source.)

That’s why we’re excited about Texas Instruments’s TPS2113A, a power multiplexer with built-in voltage sensing that supports automatic seamless switching, and today we are happy to announce the release of our TPS2113A Power Multiplexer Carrier with USB Micro-B Connector.

The switching behavior of the TPS2113A depends on the state of its VSNS input. Our carrier pulls VSNS low through an on-board pull-down resistor, which causes the multiplexer to simply select the higher of the two input sources to pass to the output. However, adding another resistor between VSNS and the primary input source creates a voltage divider that allows you to set a precise threshold voltage at which the multiplexer will switch to the secondary source.

For example, the TPS2113A could be used to build a device that is primarily powered by USB, but switches to a secondary 5 V supply as soon as the USB voltage falls below 4.8 V. Since the multiplexer can prevent its output from falling below 4.8 V during the transition, it enables the system to be seamlessly connected to and disconnected from USB without noticeable power interruptions.

The TPS2113A offers additional features that can be useful in a power supply circuit, including an adjustable current limit and a status output that indicates which power source is currently selected. Our carrier board breaks out all of the chip’s pins, making it easy to connect additional components and customize the multiplexer’s behavior for a range of applications.

We think the TPS2113A is a great power switching solution for USB devices, and we look forward to using it in upcoming designs; keep an eye out for it in our future products!

New product: LPS25H pressure/altitude sensor carrier

Posted by Kevin on 28 May 2014
Tags: new products
New product: LPS25H pressure/altitude sensor carrier

We’ve just released a carrier board for ST’s newest pressure sensor, the LPS25H, and we’re also lowering the price of our LPS331AP carrier.

Like the LPS331AP, the LPS25H provides pressure readings over a range of 260 mbar to 1260 mbar (26 kPa to 126 kPa), and this data can be used to calculate the sensor’s altitude. Our LPS25H carrier mounts the sensor on a 0.4″ × 0.8″ board (0.1″ shorter than our earlier LPS331AP carrier) that breaks out all of its pins, and as usual, we’ve included level shifters and a regulator to make it easy to use in a 5 V system. Continued…

Tutorial: How to program a Zumo robot with Simulink

Posted by Kevin on 14 May 2014
Tutorial: How to program a Zumo robot with Simulink

We posted about a Simulink library for the Zumo robot recently, and now a tutorial that teaches you how to use that library to program a Zumo robot with Simulink is available on the Adafruit Learning System. The guide walks you through setting up a Simulink model to make the Zumo follow a specific trajectory, then loading the generated code onto the Zumo to see it run.

Related post: Zumo robots programmed with Simulink by MathWorks

Zumo robots programmed with Simulink by MathWorks

Posted by Kevin on 8 May 2014

MathWorks, the producer of technical computing software including MATLAB and Simulink, has released a Simulink library for the Zumo robot. The library provides blocks that represent all of the sensors and peripherals on our Zumo robot for Arduino, making it possible to program an Arduino-controlled Zumo robot using Simulink.

These Simulink-programmed Zumo robots have made a few appearances on MathWorks’ MakerZone blog. This article discusses the math behind programming a robot to follow a line, modeling the control system as a harmonic oscillator.

MathWorks also used several Zumos as part of a demonstration at the Robot Zoo, part of the 2014 Cambridge Science Festival. You can read more about their Zumo demonstration, as well as their other robot exhibits, in their recap of the event.

Related post: How to program a Zumo robot with Simulink

R2-DR, Kevin's dead reckoning robot

Posted by Kevin on 26 March 2014
R2-DR, Kevin's dead reckoning robot

When I first started planning a robot for the recent LVBots dead reckoning competition, it was more or less a conventional design—a flat chassis with motors and circuit boards attached to the top and bottom—and I lost interest in it quickly because it felt like I was just reinventing the 3pi. I looked for a way to make the shape of the robot unique, and I noticed that the three-legged shape of R2-D2, the famous astromech droid from Star Wars, might be a good fit for a typical undercarriage composed of a ball caster and two wheels. The result of continuing along this line of investigation is my dead reckoning robot, R2-DR (you can probably guess what DR stands for). Continued…

New revision of the Dual VNH5019 motor driver shield for Arduino

Posted by Kevin on 24 March 2014
Tags: new products
New revision of the Dual VNH5019 motor driver shield for Arduino

We’ve released an updated version of our dual VNH5019 motor driver shield for Arduino. The VNH5019 is a great solution for driving high-power motors, with each chip able to supply up to 12 A continuously at 5.5 V to 24 V. However, the original version of our dual VNH5019 shield was designed before the Arduino Uno R3 was released, so it lacked pass-throughs for the four new pins (SCL, SDA, IOREF, and an unused pin) introduced by the R3 and present on all newer Arduinos. This makes it harder to stack other shields with it, especially ones that make use of the new I²C pin location. The latest board revision adds these pass-throughs to make the shield fully compatible with the Uno R3 pinout.

For more information, see the dual VNH5019 motor driver shield product page and user’s guide.

LVBots March 2014 dead reckoning competition

Posted by Kevin on 18 March 2014
Tags: lvbots

On March 6, LVBots held another competition at Pololu. This time, it was a dead reckoning contest: each robot had to find a line course and follow it to its end while keeping track of its position, then try to return to its starting position without any external navigational aids. Scoring was based on how close to the starting position the robot ended up, as well as how quickly it got there. The complete rules are available here (23k pdf). You can see a selection of the entries in this video compilation from the contest.

David has already posted about his entry. My robot was R2-DR, the miniature astromech droid, and I’ll be writing a post about it soon, too.

Are you in the Las Vegas area? Check out the LVBots Meetup page and drop by this Thursday, March 20, to see the robots in person!

Updates: You can read more about each of our robots in these blog posts:

USB connectors: Mini or Micro?

Posted by Kevin on 4 February 2014
USB connectors: Mini or Micro?

When we designed the first version of the Pololu USB-to-serial adapter way back in 2004, using a USB Mini-B receptacle was an obvious choice: it was much smaller than the standard B-type connector, allowing us to keep the board compact, and it was readily available in surface-mount configurations that facilitate automated printed circuit board assembly.

We went on to use the Mini-B connector in lots of products, like our Maestro servo controllers and Wixel. Although the even smaller Micro-B connector became part of the USB specification in 2007, it didn’t seem to offer enough of an advantage over the Mini-B connector for us to immediately switch over. Continued…

Now with USB: New RoboClaw 2x15A and 2x30A motor controllers

Posted by Kevin on 21 January 2014
Tags: new products

We’ve started selling USB versions of these two RoboClaw motor controllers from Orion Robotics:

These new RoboClaws add a USB serial interface to the other three control interfaces available (TTL serial, RC, and analog inputs), but are otherwise identical to the V4 RoboClaw 2×15A and 2×30A controllers that we previously offered. Like their predecessors, they can drive a pair of brushed DC motors with up to 15 A or 30 A, respectively, at voltages from 6 V to 34 V. Integrated dual quadrature decoders make it easy to create a closed-loop speed control system; analog feedback is also supported for closed-loop position control.

For an even wider range of current capability, the RoboClaw 2×5A Motor Controller (V4) and the RoboClaw 2×60A Motor Controller with USB (V4) are also available.

New Products

Pololu Wheel for FEETECH FS90R Micro Servo, 60×8mm Pair - Black
Mini Pushbutton Power Switch with Reverse Voltage Protection, SV
Zumo 32U4 Robot (Assembled with 75:1 HP Motors)
Mini MOSFET Slide Switch with Reverse Voltage Protection, LV
9mm Electromagnetic Buzzer: 30Ω, 3-7V, Side Opening
Mini MOSFET Slide Switch with Reverse Voltage Protection, SV
VL6180X Time-of-Flight Distance Sensor Carrier with Voltage Regulator
Zumo 32U4 Robot (Assembled with 100:1 HP Motors)
Mini Pushbutton Power Switch with Reverse Voltage Protection, LV
3-Pin Female JST ZH-Style Cable (30cm) for Sharp GP2Y0A51 Distance Sensors
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors