Posts by Kevin (Page 2)

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

New products: APA102C-based addressable RGB LED strips

Posted by Kevin on 7 July 2015
Tags: new products
New products: APA102C-based addressable RGB LED strips

We’re excited to offer a series of APA102C-based addressable RGB LED strips to complement our existing WS2812B-based LED strips. Like the WS2812 strips, the new strips have connectors on both ends to make chaining easy, and they are available in the same six combinations of LED densities and lengths:

Like the WS2812B, the APA102C combines an RGB LED and driver into a single 5050-size package, allowing them to be packed as densely as 144 LEDs per meter, and each pixel can be individually addressed to give you full control over the color of each RGB LED. However, while the WS2812B uses a high-speed one-wire control interface with strict timing requirements, the APA102C has a standard SPI interface, with separate data and clock signals, that lets it work with a wide range of communication rates, making it much easier to control.

For example, it isn’t easy for a Raspberry Pi to generate a control signal with the exact timings that the WS281x requires. However, an APA102 only reads its data signal on the rising edge of its clock signal, and the Raspberry Pi controls both signals, meaning it is free to bit-bang data to the LEDs as slowly (or quickly) and as irregularly as it wants. Alternatively, it’s straightforward to use the SoC’s built-in SPI peripheral to drive APA102 LEDs. Of course, both the bit-banging and hardware SPI approaches can also be used on many other devices, including A-Stars and Arduinos.

Close up of one segment of an APA102C-based LED strip, with the red, green, and blue LEDs on at a low brightness.

The APA102C also offers a few other improvements over the WS2812B, including a color-independent brightness control that lets you easily adjust the intensity of each LED without changing its color. Also, the color channels on an APA102C are pulse-width modulated (PWM) at a much higher frequency, making it less susceptible to flickering on camera and more suited to persistence-of-vision (POV) applications.

For more information about our APA102C-based LED strips, see their product pages.

New products: RoboClaw 2x5A, 2x15A, and 2x30A motor controllers (V5)

Posted by Kevin on 30 June 2015
Tags: new products

We’re now selling the latest V5 versions of the RoboClaw 2x5A, 2x15A, and 2x30A dual motor controllers from Ion Motion Control. Like the previous V4 RoboClaws, they can drive a pair of brushed DC motors at voltages from 6 V to 34 V, but the 2x5A now has a USB serial interface (in addition to TTL serial, RC, and analog inputs) like its larger siblings, and the 2x15A and 2x30A have a new heat sink design that should improve cooling. We expect to have updated documentation for the new versions soon.

Ion Motion Control RoboClaw 2×7A or 2×5A dual motor controller (V5).
Ion Motion Control RoboClaw 2×15A, 2×30A, or 2×45A dual motor controller (V5).

MyoWare muscle sensor Kickstarter

Posted by Kevin on 8 May 2015


MyoWare muscle sensor Kickstarter

Advancer Technologies has launched a Kickstarter campaign for their MyoWare muscle sensor. Like its predecessor, the Muscle Sensor v3 (which we started carrying last year), the 4th-generation MyoWare is designed to measure the electrical activity of a muscle and output an analog signal that indicates how hard the muscle is being flexed. It will feature a number of improvements compared to the older sensor, including single-supply operation (no need for a negative voltage supply) and built-in snap connectors for electrodes.

These sensors create interesting possibilities by enabling muscle-controlled interfaces to be added to various projects. They have notably been used in prosthetic arms made for and donated to children by Limbitless Solutions, who received some attention recently as one of their arms was delivered to its recipient by none other than Tony Stark (actor Robert Downey Jr.)! To help their mission, Advancer Technologies plans to donate a MyoWare sensor to Limbitless for every five backers of the Kickstarter project.

To learn more about the MyoWare sensor and support the project, visit its Kickstarter page.

New products: D24V10Fx 1 A step-down voltage regulators

Posted by Kevin on 28 November 2014
Tags: new products
New products:  D24V10Fx 1 A step-down voltage regulators

We’ve just released a new family of D24V10Fx step-down voltage regulators. These buck regulators are very similar to the D24V5Fx regulator family we introduced in March, but they use the Intersil ISL85410 regulator IC – a higher-current relative of the ISL85415 on the D24V5x – that allows them to output twice as much current (up to 1 A). The D24V10Fx family is available in five different versions with fixed output voltages of 3.3V, 5V, 6V, 9V, and 12V.

Like their 500 mA counterparts, the D24V10Fx regulators operate with input voltages as high as 36 V at typical efficiencies of 80% to 95%. They feature the same power-save mode to improve efficiency at light loads, along with low dropout voltages and integrated protection against over-temperature and over-current conditions. All this makes them a good choice for powering applications where input voltage and operating current might vary over a wide range.

The slightly larger size of these new regulator boards (0.5″ × 0.7″ × 0.14″; 18 mm × 13 mm × 3.5 mm) makes room for a fifth pin that provides a “power good” indication (PG), but they are still not much bigger than standard through-hole linear regulators. The picture below shows a D24V10Fx, a D24V5Fx, and a 7805 voltage regulator in a TO-220 package:

For other regulator options, you can take a look at our full selection of step-up voltage regulators, step-down voltage regulators, and step-up/step-down voltage regulators.

Polo-BOO! Halloween Sale

Posted by Kevin on 6 October 2014


Polo-BOO! Halloween Sale

Halloween is just a few short weeks away, and that means it’s time to start making an awesome costume or building an extravagant yard display (unless you’ve already been hard at work on one for months). Whether you want to dress up or decorate your home, we offer lots of products that can make your projects stand out, so we’re having a Halloween sale to help you get the parts you need!

From now until October 22, you can get 10% off hundreds of products, from servos and LEDs to sensors and programmable controllers. Even bigger discounts of up to 30% are available on a few select items. See the sale page for more details and the full list of products.

As always, we would love to hear about anything cool you make with our stuff, so please share it with us via email or on our forum; we might feature it on the blog! This month, we’ll be posting a series of Halloween-themed projects of our own to help inspire you.

New product: Raspberry Pi Model B+

Posted by Kevin on 24 July 2014
New product: Raspberry Pi Model B+

The Raspberry Pi single-board computer has been around for a little over two years in its original Model A and Model B versions, and in that time, it’s become a very popular platform for electronics experimentation. With many of the same capabilities as a regular desktop or laptop PC, but at a small fraction of the size and cost, the Raspberry Pi offers features like network connectivity and significant processing power for robots and other electronics projects.

Raspberry Pi Model B, Revision 2.0, top view.
Raspberry Pi Model B+, top view.

We’re now selling the new Raspberry Pi Model B+, which improves on the Model B in a number of ways:

  • More GPIO pins are available on a 40-pin header; the Model B has a 26-pin GPIO header.
  • The number of USB host ports has been doubled to four.
  • Switching regulators lower the power consumption of the Model B+ by 0.5 W to 1 W compared to the Model B (which uses linear regulators), while audio is improved by a dedicated low-noise power supply.
  • A much smaller microSD card socket replaces the previous full-size SD card socket.
  • Audio and composite video output are combined on the 3.5 mm jack, and many of the connectors extend much less past the edge of the board (as does the inserted microSD card).
  • Four mounting holes provide more flexibility in mounting the Model B+.

We’ve seen our customers build lots of cool projects with the Raspberry Pi, including a wirelessly-controlled Zumo robot with a video camera and a robotic ping-pong ball collector. We look forward to seeing what you’ll do with the Model B+!

New product: AltIMU-10 v4 gyro, accelerometer, compass, and altimeter

Posted by Kevin on 27 June 2014
Tags: new products
New product: AltIMU-10 v4 gyro, accelerometer, compass, and altimeter

Two weeks ago, we announced a big price reduction of our MEMS-based sensors and explained a little about why we release new versions of these boards so frequently. If you looked closely at the diagram showing the evolution of our ST MEMS sensor boards, you might have noticed that we’ve used each IC on a carrier board for that chip by itself, as well as on an IMU board combined with other sensors, with one exception: the LPS25H pressure sensor. When that post was written, we had recently released our LPS25H carrier, but we did not yet offer an IMU featuring this new barometer IC. The AltIMU-10 v3, which uses the older LPS331AP pressure sensor, was the newest AltIMU available from us at the time.

With the release of the AltIMU-10 v4 this week, that updated IMU is now available. Like the v3 version, the AltIMU-10 v4 contains an LSM303D three-axis magnetometer and accelerometer and an L3GD20H three-axis gyro, and it replaces the LPS331AP pressure sensor on the older board with the improved LPS25H, enabling pressure and altitude measurements with higher accuracy and lower noise.

We think the AltIMU-10 v4 combines the state of the art in ST’s MEMS sensors into one compact module at a great price. However, we’ve also put the AltIMU-10 v3 on clearance and lowered its price; if you don’t absolutely need ST’s newest pressure sensor on your IMU, the v3 is still a very good sensor board to consider.

Here’s an updated version of our diagram showing where the new AltIMU-10 fits in:

Evolution and release dates of Pololu carriers for ST’s MEMS sensors through June 2014.

New product: CH Robotics UM7-LT orientation sensor

Posted by Kevin on 25 June 2014
Tags: new products
New product: CH Robotics UM7-LT orientation sensor

We’re now selling the UM7-LT orientation sensor, the latest Attitude and Heading Reference System (AHRS) from CH Robotics. The UM7 takes advantage of newer sensor technology to offer improved performance compared to its predecessor, the UM6, despite its reduced cost.

Like earlier CH Robotics AHRS modules, the UM7 contains an onboard microcontroller that combines data from its three-axis accelerometer, gyro, and magnetometer to produce orientation estimates 500 times a second. The attitude and heading information, available in the form of Euler angles or quaternions, can either be streamed automatically or provided upon request through a TTL serial interface.

Power and serial connections can be made to the UM7-LT through a five-pin connector and an included matching cable, and expansion headers provide additional interfaces like SPI and a secondary UART that can be connected to an external GPS module. The free CHR Serial Interface software makes it easy to visualize data from the UM7 and configure its settings.

For more information about the UM7-LT, see its product page. A version of the UM7 with an enclosure, similar to the enclosed UM6, is expected to be available in the next few months.

New product: TPS2113A Power Multiplexer Carrier with USB Micro-B Connector

Posted by Kevin on 20 June 2014
Tags: new products
New product: TPS2113A Power Multiplexer Carrier with USB Micro-B Connector

Earlier this year we released a carrier for the Fairchild FPF1320, a power multiplexer that can switch between two separate power supplies, such as USB and a battery-powered 5 V regulator. The FPF1320 is great for transitioning between power sources based on an external selection signal, but by itself, it is not ideal for applications like a USB-powered microcontroller: it lacks a voltage sensor that would enable the switching to be both seamless and automatic. (By default, our carrier allows the output voltage to drop below 1.5 V whenever it switches from its preferred to alternate power source.)

That’s why we’re excited about Texas Instruments’s TPS2113A, a power multiplexer with built-in voltage sensing that supports automatic seamless switching, and today we are happy to announce the release of our TPS2113A Power Multiplexer Carrier with USB Micro-B Connector.

The switching behavior of the TPS2113A depends on the state of its VSNS input. Our carrier pulls VSNS low through an on-board pull-down resistor, which causes the multiplexer to simply select the higher of the two input sources to pass to the output. However, adding another resistor between VSNS and the primary input source creates a voltage divider that allows you to set a precise threshold voltage at which the multiplexer will switch to the secondary source.

For example, the TPS2113A could be used to build a device that is primarily powered by USB, but switches to a secondary 5 V supply as soon as the USB voltage falls below 4.8 V. Since the multiplexer can prevent its output from falling below 4.8 V during the transition, it enables the system to be seamlessly connected to and disconnected from USB without noticeable power interruptions.

The TPS2113A offers additional features that can be useful in a power supply circuit, including an adjustable current limit and a status output that indicates which power source is currently selected. Our carrier board breaks out all of the chip’s pins, making it easy to connect additional components and customize the multiplexer’s behavior for a range of applications.

We think the TPS2113A is a great power switching solution for USB devices, and we look forward to using it in upcoming designs; keep an eye out for it in our future products!

New product: LPS25H pressure/altitude sensor carrier

Posted by Kevin on 28 May 2014
Tags: new products
New product: LPS25H pressure/altitude sensor carrier

We’ve just released a carrier board for ST’s newest pressure sensor, the LPS25H, and we’re also lowering the price of our LPS331AP carrier.

Like the LPS331AP, the LPS25H provides pressure readings over a range of 260 mbar to 1260 mbar (26 kPa to 126 kPa), and this data can be used to calculate the sensor’s altitude. Our LPS25H carrier mounts the sensor on a 0.4″ × 0.8″ board (0.1″ shorter than our earlier LPS331AP carrier) that breaks out all of its pins, and as usual, we’ve included level shifters and a regulator to make it easy to use in a 5 V system. Continued…

New Products

A-Star 32U4 Robot Controller SV with Raspberry Pi Bridge (SMT Components Only)
75:1 Metal Gearmotor 25Dx54L mm HP 12V with 48 CPR Encoder
20.4:1 Metal Gearmotor 25Dx50L mm HP 12V with 48 CPR Encoder
Free Circuit Cellar magazine December 2015
HP 12V Motor with 48 CPR Encoder for 25D mm Metal Gearmotors (No Gearbox)
AltIMU-10 v5 Gyro, Accelerometer, Compass, and Altimeter (LSM6DS33, LIS3MDL, and LPS25H Carrier)
A-Star 32U4 Robot Controller SV with Raspberry Pi Bridge
LSM6DS33 3D Accelerometer and Gyro Carrier with Voltage Regulator
Raspberry Pi 2 Model B
LIS3MDL 3-Axis Magnetometer Carrier with Voltage Regulator
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors