Posts by Kevin (Page 5)

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

Popular tags: community projects new products raspberry pi arduino more…

New product: VL6180X Time-of-Flight Distance Sensor Carrier

Posted by Kevin on 25 September 2015
Tags: new products

There’s another new product coming out of the assembly line here at Pololu: the VL6180X Time-of-Flight Distance Sensor Carrier. The VL6180 from ST Microelectronics distinguishes itself from other optical sensors by using time-of-flight measurements to determine distance: it emits pulses of infrared laser light and precisely times how long they take to reach the nearest object and reflect back to the sensor, which means it is essentially a complete short-range lidar system in a single tiny package.

With this technique, the VL6180X can accurately measure the absolute distance to a target object from 0 cm to at least 10 cm away – sometimes up to 20 cm away, depending on the target and environment – without being affected by what color the target is or how reflective it is.

VL6180X datasheet graph of typical ranging performance.

Distance readings can be obtained through the sensor’s I²C interface (in units of millimeters – no complicated conversions necessary!). The VL6180X also includes an ambient light sensor; this combination of sensing capabilities is useful for applications, including smartphones, for which the VL6180 was designed.

The VL6180X IC by itself is a challenge to use because of its small surface-mount package and particular voltage requirements, so our breakout board includes a 2.8 V regulator and level shifters that allow it to be used with 3.3 V and 5 V systems. The carrier board provides a breadboard-friendly pinout and mounting holes while remaining as compact as possible (0.5″ × 0.7″). We’ve also written an Arduino library for the VL6180X that makes it easy to get started with this board.

For more information about the VL6180X carrier, see its product page.

New products: Roboclaw 2x45A and ST 2x45A

Posted by Kevin on 20 July 2015
Tags: new products

Along with the V5 RoboClaw motor controllers we recently started carrying (2x5A, 2x15A, and 2x30A), we now have a pair of 2x45A versions from Ion Motion Control as well. The regular RoboClaw 2x45A (V5) has pin headers for its control I/O connections, like the other RoboClaws, while the Roboclaw ST 2x45A (V5) has screw terminal I/O connections for a potentially more convenient way to connect wires.

RoboClaw 2×15A, 2×30A, or 2×45A dual motor controller (V5).

RoboClaw ST 2×45A dual motor controller (V5).

Both variants are capable of supplying a continuous 45 A (60 A peak) to a pair of motors at voltages from 6 V to 34 V, and they offer the same control options as the other members of the RoboClaw family: USB, TTL serial, RC signals, and analog voltages.

New product: Pololu Dual MC33926 Motor Driver for Raspberry Pi

Posted by Kevin on 15 July 2015

The Pololu Dual MC33926 Motor Driver for Raspberry Pi is our latest offering designed to help you build a robot around the powerful and versatile Raspberry Pi single-board computer. It features a pair of Freescale MC33926 motor drivers, each capable of supplying a motor with up to 3 A continuous (5 A peak) at voltages from 5 V to 28 V. This makes it a good choice for driving bigger things like our 25D and 37D motors and even linear actuators.

Driving motors with a #2756 dual motor driver on a on a Raspberry Pi Model B+ or Pi 2 Model B. A step-down regulator provides 5 V to the Raspberry Pi.

We particularly like using the MC33926 because of its robustness: it can withstand voltage transients up to 40 V, and it has a current regulation feature that actively limits the output current to a safe amount. Furthermore, the driver automatically lowers the current limit as its temperature increases, allowing it to gracefully reduce the motor current instead of abruptly shutting down.

This add-on board is a step up from the relatively minimal, lower-power DRV8835 motor driver expansion we released last year, but it is just as easy to use. Our Python library helps you quickly get your motors running with the board’s default pin mappings, which use logic gates to enable drive/brake operation of the MC33926 drivers with only two control pins per motor.

Additional inputs and outputs on the MC33926 drivers are exposed for advanced users who want to make use of other configurations and control methods, and a small prototyping area on the side of the board provides a convenient space for adding custom circuits. As with the DRV8835 board, you can optionally connect a voltage regulator (not included) to power the Raspberry Pi from the motor power supply.

The motor driver board is available in two versions:

  • a partial kit, with connectors included but not soldered in
  • fully assembled, with the female header and terminal blocks soldered to the board

Pololu Dual MC33926 Motor Driver for Raspberry Pi (kit version) with included hardware.

Pololu Dual MC33926 Motor Driver for Raspberry Pi (assembled version) with included hardware.

If you’re familiar with other Raspberry Pi add-on boards, you might find it unusual that we are not calling this board a “motor driver HAT”. In fact, it meets most of the requirements needed to qualify as a Raspberry Pi HAT (Hardware Attached on Top): it matches the HAT mechanical specification, and it even includes the recommended ideal diode circuit, allowing the optional regulator and the Raspberry Pi’s usual USB Micro-B power supply to be safely connected at the same time.

The reason the board does not qualify as a HAT is the absence of an ID EEPROM. Such a component is intended to allow the Raspberry Pi to identify a HAT board and configure itself to work with that board. We spent some time looking into how an ID EEPROM might help make this motor driver expansion better or easier to use, and we made provision for adding one in the design of the PCB, but eventually we concluded that it seems to offer no substantial value for this kind of board. (We’ve even seen some similar HATs from other manufacturers that ship with a completely blank EEPROM!)

Automatic configuration might be useful for making the Raspberry Pi automatically load a Linux device driver for an I²C or SPI add-on, but since this motor driver expansion is controlled with direct manipulation of GPIO pins, the responsible program or library can easily set up the pins itself before it begins driving and reading them. Other use cases, like enabling the Raspberry Pi to detect whether the HAT is connected and potentially distinguish between different versions of the HAT, would require much more complex support software to take advantage of while being of questionable benefit.

As a result, we’ve decided to omit the ID EEPROM from the board, even if that means it doesn’t meet the full HAT specification and shouldn’t be called a HAT. The EEPROM format specification still appears to be preliminary and subject to change, so it’s possible that future Raspberry Pi updates will make the EEPROM more useful; if so, we will likely reconsider the decision not to populate the EEPROM chip. However, if you think we’ve missed an argument for including an ID EEPROM now or have any other thoughts on its value, we’d be interested to hear your observations.

New products: APA102C-based addressable RGB LED strips

Posted by Kevin on 7 July 2015
Tags: new products

We’re excited to offer a series of APA102C-based addressable RGB LED strips to complement our existing WS2812B-based LED strips. Like the WS2812 strips, the new strips have connectors on both ends to make chaining easy, and they are available in the same six combinations of LED densities and lengths:

Like the WS2812B, the APA102C combines an RGB LED and driver into a single 5050-size package, allowing them to be packed as densely as 144 LEDs per meter, and each pixel can be individually addressed to give you full control over the color of each RGB LED. However, while the WS2812B uses a high-speed one-wire control interface with strict timing requirements, the APA102C has a standard SPI interface, with separate data and clock signals, that lets it work with a wide range of communication rates, making it much easier to control.

For example, it isn’t easy for a Raspberry Pi to generate a control signal with the exact timings that the WS281x requires. However, an APA102 only reads its data signal on the rising edge of its clock signal, and the Raspberry Pi controls both signals, meaning it is free to bit-bang data to the LEDs as slowly (or quickly) and as irregularly as it wants. Alternatively, it’s straightforward to use the SoC’s built-in SPI peripheral to drive APA102 LEDs. Of course, both the bit-banging and hardware SPI approaches can also be used on many other devices, including A-Stars and Arduinos.

Close up of one segment of an APA102C-based LED strip, with the red, green, and blue LEDs on at a low brightness.

The APA102C also offers a few other improvements over the WS2812B, including a color-independent brightness control that lets you easily adjust the intensity of each LED without changing its color. Also, the color channels on an APA102C are pulse-width modulated (PWM) at a much higher frequency, making it less susceptible to flickering on camera and more suited to persistence-of-vision (POV) applications.

For more information about our APA102C-based LED strips, see their product pages.

New products: RoboClaw 2x5A, 2x15A, and 2x30A motor controllers (V5)

Posted by Kevin on 30 June 2015
Tags: new products

We’re now selling the latest V5 versions of the RoboClaw 2x5A, 2x15A, and 2x30A dual motor controllers from Ion Motion Control. Like the previous V4 RoboClaws, they can drive a pair of brushed DC motors at voltages from 6 V to 34 V, but the 2x5A now has a USB serial interface (in addition to TTL serial, RC, and analog inputs) like its larger siblings, and the 2x15A and 2x30A have a new heat sink design that should improve cooling. We expect to have updated documentation for the new versions soon.

RoboClaw 2×7A or 2×5A dual motor controller (V5).

RoboClaw 2×15A, 2×30A, or 2×45A dual motor controller (V5).

MyoWare muscle sensor Kickstarter

Posted by Kevin on 8 May 2015


Advancer Technologies has launched a Kickstarter campaign for their MyoWare muscle sensor. Like its predecessor, the Muscle Sensor v3 (which we started carrying last year), the 4th-generation MyoWare is designed to measure the electrical activity of a muscle and output an analog signal that indicates how hard the muscle is being flexed. It will feature a number of improvements compared to the older sensor, including single-supply operation (no need for a negative voltage supply) and built-in snap connectors for electrodes.

These sensors create interesting possibilities by enabling muscle-controlled interfaces to be added to various projects. They have notably been used in prosthetic arms made for and donated to children by Limbitless Solutions, who received some attention recently as one of their arms was delivered to its recipient by none other than Tony Stark (actor Robert Downey Jr.)! To help their mission, Advancer Technologies plans to donate a MyoWare sensor to Limbitless for every five backers of the Kickstarter project.

To learn more about the MyoWare sensor and support the project, visit its Kickstarter page.

New products: D24V10Fx 1 A step-down voltage regulators

Posted by Kevin on 28 November 2014
Tags: new products

We’ve just released a new family of D24V10Fx step-down voltage regulators. These buck regulators are very similar to the D24V5Fx regulator family we introduced in March, but they use the Intersil ISL85410 regulator IC – a higher-current relative of the ISL85415 on the D24V5x – that allows them to output twice as much current (up to 1 A). The D24V10Fx family is available in five different versions with fixed output voltages of 3.3V, 5V, 6V, 9V, and 12V.

Like their 500 mA counterparts, the D24V10Fx regulators operate with input voltages as high as 36 V at typical efficiencies of 80% to 95%. They feature the same power-save mode to improve efficiency at light loads, along with low dropout voltages and integrated protection against over-temperature and over-current conditions. All this makes them a good choice for powering applications where input voltage and operating current might vary over a wide range.

The slightly larger size of these new regulator boards (0.5″ × 0.7″ × 0.14″; 18 mm × 13 mm × 3.5 mm) makes room for a fifth pin that provides a “power good” indication (PG), but they are still not much bigger than standard through-hole linear regulators. The picture below shows a D24V10Fx, a D24V5Fx, and a 7805 voltage regulator in a TO-220 package:

For other regulator options, you can take a look at our full selection of step-up voltage regulators, step-down voltage regulators, and step-up/step-down voltage regulators.

Polo-BOO! Halloween Sale

Posted by Kevin on 6 October 2014


Halloween is just a few short weeks away, and that means it’s time to start making an awesome costume or building an extravagant yard display (unless you’ve already been hard at work on one for months). Whether you want to dress up or decorate your home, we offer lots of products that can make your projects stand out, so we’re having a Halloween sale to help you get the parts you need!

From now until October 22, you can get 10% off hundreds of products, from servos and LEDs to sensors and programmable controllers. Even bigger discounts of up to 30% are available on a few select items. See the sale page for more details and the full list of products.

As always, we would love to hear about anything cool you make with our stuff, so please share it with us via email or on our forum; we might feature it on the blog! This month, we’ll be posting a series of Halloween-themed projects of our own to help inspire you.

New product: Raspberry Pi Model B+

Posted by Kevin on 24 July 2014

The Raspberry Pi single-board computer has been around for a little over two years in its original Model A and Model B versions, and in that time, it’s become a very popular platform for electronics experimentation. With many of the same capabilities as a regular desktop or laptop PC, but at a small fraction of the size and cost, the Raspberry Pi offers features like network connectivity and significant processing power for robots and other electronics projects.

Raspberry Pi Model B, Revision 2.0, top view.

Raspberry Pi Model B+, top view.

We’re now selling the new Raspberry Pi Model B+, which improves on the Model B in a number of ways:

  • More GPIO pins are available on a 40-pin header; the Model B has a 26-pin GPIO header.
  • The number of USB host ports has been doubled to four.
  • Switching regulators lower the power consumption of the Model B+ by 0.5 W to 1 W compared to the Model B (which uses linear regulators), while audio is improved by a dedicated low-noise power supply.
  • A much smaller microSD card socket replaces the previous full-size SD card socket.
  • Audio and composite video output are combined on the 3.5 mm jack, and many of the connectors extend much less past the edge of the board (as does the inserted microSD card).
  • Four mounting holes provide more flexibility in mounting the Model B+.

We’ve seen our customers build lots of cool projects with the Raspberry Pi, including a wirelessly-controlled Zumo robot with a video camera and a robotic ping-pong ball collector. We look forward to seeing what you’ll do with the Model B+!

New product: AltIMU-10 v4 gyro, accelerometer, compass, and altimeter

Posted by Kevin on 27 June 2014
Tags: new products

Two weeks ago, we announced a big price reduction of our MEMS-based sensors and explained a little about why we release new versions of these boards so frequently. If you looked closely at the diagram showing the evolution of our ST MEMS sensor boards, you might have noticed that we’ve used each IC on a carrier board for that chip by itself, as well as on an IMU board combined with other sensors, with one exception: the LPS25H pressure sensor. When that post was written, we had recently released our LPS25H carrier, but we did not yet offer an IMU featuring this new barometer IC. The AltIMU-10 v3, which uses the older LPS331AP pressure sensor, was the newest AltIMU available from us at the time.

With the release of the AltIMU-10 v4 this week, that updated IMU is now available. Like the v3 version, the AltIMU-10 v4 contains an LSM303D three-axis magnetometer and accelerometer and an L3GD20H three-axis gyro, and it replaces the LPS331AP pressure sensor on the older board with the improved LPS25H, enabling pressure and altitude measurements with higher accuracy and lower noise.

We think the AltIMU-10 v4 combines the state of the art in ST’s MEMS sensors into one compact module at a great price. However, we’ve also put the AltIMU-10 v3 on clearance and lowered its price; if you don’t absolutely need ST’s newest pressure sensor on your IMU, the v3 is still a very good sensor board to consider.

Here’s an updated version of our diagram showing where the new AltIMU-10 fits in:

Evolution and release dates of Pololu carriers for ST’s MEMS sensors through June 2014.

New Products

Motoron M3S550 Triple Motor Controller Shield Kit for Arduino
DRV8434 Stepper Motor Driver Carrier (Header Pins Soldered)
15V, 2.7A Step-Down Voltage Regulator D30V30F15
Ribbon Cable Premium Jumper Wires 10-Color F-F 36" (90 cm)
4.2-15V, 3A Fine-Adjust Step-Down Voltage Regulator D30V30MAS
12V, 2.8A Step-Down Voltage Regulator D30V30F12
DRV8434 Stepper Motor Driver Carrier
3.3V, 2.5A Step-Up/Step-Down Voltage Regulator S13V25F3
VL53L8CX Time-of-Flight 8×8-Zone Distance Sensor Carrier with Voltage Regulators, 400cm Max
Ribbon Cable with Pre-Crimped Terminals 10-Color M-F 36" (90 cm)
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors