COVID-19 impact: We are still operating and shipping all orders! We are operating with a reduced staff, so for critical requirements, including fighting COVID-19, please contact us so we can identify priorities. Click here for more info.

Posts by Paul

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

Popular tags: community projects new products raspberry pi arduino more…

Cyber Monday doorbusters and deals revealed!

Posted by Paul on 26 November 2017

Tomorrow is Cyber Monday and the final day of our sale; you can check out the Monday deals on our sale page now. The weekend deals are still active until midnight Pacific, so this is your chance to pick out what you want from those and what you want to get on Monday!

Friday deals - Romi, motor drivers, and more

Posted by Paul on 23 November 2017

Twelve hours until the Black Friday doorbusters start!

You can check out Friday’s deals and doorbusters flyer on our sale page now; complete details will be available later tonight.

Happy Thanksgiving and Thursday deals revealed!

Posted by Paul on 22 November 2017

Thursday’s deals and doorbusters are now shown on our Black Friday sale page. It’s going to be a Zumo-themed day, with a big sale on the Zumo robots and kits as well as the motors you need to build them. Or you can take advantage of Thursday’s discounts on microcontroller and motor controller boards to build your own sumo bot! Like Wednesday, Thursday’s doorbusters start at 6:00 AM Pacific, and there will be many more deals available all day, including site-wide discounts and free items.

Please note that we will be closed Thursday, and have a happy Thanksgiving!

How to make a Balboa robot balance, part 5: popping up and driving around

Posted by Paul on 28 April 2017
How to make a Balboa robot balance, part 5: popping up and driving around

This is the fifth and final post in a series about how to make a Balboa 32U4 robot balance. In earlier posts I covered everything you need to get the robot balancing. In this post I will talk about how to get your Balboa to perform some fun and challenging maneuvers.

If you have been following along, you should now have your robot using its inertial sensors, motors, and encoders together to balance in place. Now it’s time to get it moving! Our first challenge will be to get it to “pop up” from a resting position into a balancing position. Then I will show how you can get the Balboa to drive around while balancing. Continued…

How to make a Balboa robot balance, part 4: a balancing algorithm

Posted by Paul on 7 April 2017
How to make a Balboa robot balance, part 4: a balancing algorithm

This is the fourth post in a series about how to make a Balboa 32U4 robot balance. In earlier posts I covered the basic sensors and mechanical parts used for balancing; in this post I will show you how to put everything together to make the robot actually balance.

From earlier posts we have obtained six basic variables for use in balancing: Continued…

How to make a Balboa robot balance, part 3: encoders

Posted by Paul on 30 March 2017
How to make a Balboa robot balance, part 3: encoders

This is the third post in a series about how to make a Balboa 32U4 robot balance. Last week I talked about inertial sensors, especially the gyro. In this post I will talk about the Balboa’s built-in encoders, which allow accurate measurements of motor speed and distance.

To get your Balboa to balance, you will soon need to create a balancing algorithm, a program that takes sensor input and computes the appropriate motor speed settings to keep the robot upright. So far our only inputs, both from the gyro, are the rate of rotation and current angle of the robot. These are not quite enough to make a good balancer. To see why, suppose that your program tries to balance by holding the angle at a constant 90°. If your definition of 90° is even slightly off-balance, the robot will need to keep accelerating, driving faster and faster to maintain it, until it reaches top speed or hits an obstacle. You might be able to account for this by using the motor output settings themselves as an input to your algorithm, but this is difficult, especially at the low speeds used for balancing. Also, even if you can avoid accelerating, your robot will gradually drift in one direction or the other. The Balboa’s encoders are valuable additional sensor inputs that allow you to measure how fast the wheels are actually turning, so you can directly control acceleration and drift. As a bonus, encoders are great for driving straight, precision turns, and navigation. Continued…

How to make a Balboa robot balance, part 2: inertial sensors

Posted by Paul on 24 March 2017
How to make a Balboa robot balance, part 2: inertial sensors

This is the second post in a series about how to make a Balboa 32U4 robot balance. Last week I talked about selecting mechanical components. In this post I will cover the inertial sensors included on the Balboa’s control board and how to use them in your code.

The key to Balboa’s balancing ability is the built-in ST LSM6DS33 IMU chip, which combines a 3D gyroscope and a 3D accelerometer. The Balboa also includes an ST LIS3MDL 3-axis magnetometer. Both sensors are connected to the AVR via I²C, giving it access to a total of nine sensor channels. These nine channels can be used in software to make an AHRS (attitude and heading reference system), a system that gives the robot a sense of its orientation in three dimensions. AHRS software is particularly important in aviation/drone applications, but for basic balancing, you don’t need anything that complicated. In fact, a single gyro channel is enough to determine the robot’s angle of rotation relative to vertical. The gyroscope’s y-axis channel measures the Balboa’s forward/backward rate of rotation; that is the channel we will be looking at here. Continued…

How to make a Balboa robot balance, part 1: selecting mechanical parts

Posted by Paul on 17 March 2017
How to make a Balboa robot balance, part 1: selecting mechanical parts

This is the first post in a series about how to make a Balboa 32U4 robot balance. Today I will talk about selecting mechanical parts for your Balboa. We offer a variety of gearmotors and wheels that work with the Balboa, and the Balboa kit includes five different gear ratios for the external gearbox, so even without considering non-standard modifications, there are many possible configurations of the robot. In this post I will give you some guidance about choosing the right parts. Continued…

New product: Romi 32U4 Control Board

Posted by Paul on 7 February 2017

What do you need to turn a Romi chassis into a functioning robot? Here are some Romi projects from the community, as well a couple of our example builds:

A variety of controllers can be used with the Romi, but until now you have had to figure out lots of wiring to connect everything together. You will always need some wiring to connect your own sensors or other devices, but we have been trying to make it easier to get started, beginning with the Romi power distribution board and motor driver board, which help simplify some of the more difficult parts. Our new Romi 32U4 Control Board is the culmination of this product line: a complete controller solution for the Romi that integrates power, motor control, and an Arduino-compatible microcontroller.

Romi power distribution board, motor driver board,
and the new Romi 32U4 Control Board.

Here is how it looks when connected to a Romi Chassis with motors and encoders plugged in, as well as the optional LCD:

Features of the Romi 32U4 Control Board

Pinout diagram of the Romi 32U4 Control Board (ATmega32U4 pinout, peripherals, and board power control).

  • Reverse-protected battery power switch circuit
  • Powerful 5 V, 2 A switching regulator
  • Dual 1.8 A DRV8838 motor drivers
  • ATmega32U4 microcontroller with Arduino-compatible USB bootloader
  • 16 free general-purpose I/O ports including 10 analog inputs
  • LCD connector
  • Buzzer
  • Three user buttons
  • Five indicator LEDs (2 for power, 3 user-controllable)
  • Battery voltage monitoring
  • Quadrature encoder inputs
  • Four general-purpose level shifters
  • 3-axis I²C accelerometer
  • 3-axis I²C gyroscope
  • Raspberry Pi connector with I²C interface and HAT EEPROM

Raspberry Pi interface

Microcontrollers like the ATmega32U4 are great for fast, timing-sensitive operations such as reading sensors or driving servos, but their computing power is very limited compared to devices like the Raspberry Pi. That is why we built a Raspberry Pi interface into this board: to give you the option to expand your robot beyond what is possible with a microcontroller. This could be useful for anything from advanced applications like computer vision or room mapping to simply letting your robot share status updates on Twitter. Here is a Romi assembled with a Raspberry Pi:

When connected, the control board supplies power to the Raspberry Pi and connects to it as an I²C slave device. We include the ID EEPROM required by the HAT specification, though we have not found it particularly useful, so we ship it blank and unlocked for you to experiment with.

Our Arduino library gives example code for I²C connectivity, and you can check out our Raspberry Pi tutorial for the A-Star 32U4 Robot Controller, which we will be updating for the Romi 32U4 Control board.

For more information about the Romi 32U4 Control Board or to order, please see its product page.

Polo-BOO! Halloween Sale

Posted by Paul on 7 October 2016

Halloween is quickly approaching, but there is still plenty of time for you makers out there to build something that will impress/terrify your friends and neighbors, and we want to help! We are having a sale on servos, motors, programmable controllers, sensors, LEDs, power supplies, and more – products that might come in handy for building an amazing costume or interactive yard display. See the sale page for more details and the full list of products.

Note: The United States Postal Service is closed on Monday, October 10 in observance of Columbus Day. Pololu will be in operation and will ship orders via FedEx as usual. Orders scheduled for shipping via USPS on Monday will be shipped the following day.

New Products

Magnetic Encoder Pair Kit with Side-Entry Connector for Micro Metal Gearmotors, 12 CPR, 2.7-18V
131:1 Metal Gearmotor 37Dx73L mm 12V with 64 CPR Encoder (Helical Pinion)
Pololu Wheel for Standard Servo Splines (25T, 5.8mm) - 90×10mm, Red, 2-Pack
Pololu Wheel for Standard Servo Splines (25T, 5.8mm) - 90×10mm, Black, 2-Pack
15:1 Micro Metal Gearmotor HPCB 6V with Extended Motor Shaft
15:1 Micro Metal Gearmotor LP 6V
Pololu Wheel for Standard Servo Splines (25T, 5.8mm) - 90×10mm, White, 2-Pack
12V Motor with 64 CPR Encoder for 37D mm Metal Gearmotors (No Gearbox, Helical Pinion)
Pololu Wheel for Micro Servo Splines (20T, 4.8mm) - 60×8mm, Red, 2-Pack
5V, 5.5A Step-Down Voltage Regulator D36V50F5
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors