5V, 2A Step-Up/Step-Down Voltage Regulator S13V20F5

Pololu item #: 4085
Brand: Pololu supply outlook
Status: Active and Preferred 
RoHS 3 compliant

Price break Unit price (US$)
1 12.95
5 11.91
25 10.96
100 10.08


backorders allowed

Output voltage Typical
max current*
Input voltage range Size Optional enable
input
Reverse voltage
protection
5 V 2 A 2.8 V – 22 V 0.35″ × 0.475″

*For input voltages close to the output. Actual achievable maximum continuous current is a function of input and output voltage and is limited by thermal dissipation. See the output current graphs on the product page for more information.

Alternatives available with variations in these parameter(s): continuous output current Select variant…

 Description Specs (11) Pictures (13) Resources (3) FAQs (0) On the blog (2) 

Overview

The S13VxF5 family of efficient switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) use a buck-boost topology to convert both higher and lower input voltages to a regulated 5 V output. They take input voltages from 2.8 V to 22 V and increase or decrease them as necessary, offering a typical efficiency of over 85% and typical continuous output currents between 1 A and 3 A . The flexibility in input voltage offered by this family of regulators is especially well-suited for battery-powered applications in which the battery voltage begins above 5 V and drops below as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered.

This family consists of the S13V30F5, which is a larger (0.9″ × 0.9″) high-current version:

and three extra-compact (0.35″ × 0.475″) lower-current versions:

The regulators have under-voltage lockout, output over-voltage protection, and over-current protection. A thermal shutdown feature also helps prevent damage from overheating and a soft-start feature limits the inrush current and gradually ramps the output voltage on startup. The larger 3 A S13V30F5 has reverse-voltage protection up to 20 V, but the S13V10F5, S13V15F5, and S13V20F5 do not.

The extended S13VxFx family also includes versions with other output voltages

3.3V Step-Up/Step-Down Voltage Regulator S13V25F3.

The S13V25Fx family, which is pin-compatible with the S13V30F5, consists of six 2.5 A regulators with output voltages ranging from 3.3 V to 15 V:

These versions have the same overall board dimensions as the S13V30F5, but please note that the tall components (i.e. electrolytic capacitors and inductor) are in different locations.

Details for item #4085

5V, 2A Step-Up/Step-Down Voltage Regulator S13V20F5, top view.

5V, 2A Step-Up/Step-Down Voltage Regulator S13V20F5, bottom view.

Note: This product is the 5V, 2A Step-Up/Step-Down Voltage Regulator S13V20F5. It can be distinguished from the similar-looking S13V10F5 and S13V15F5 by the inductor style, which is different for each of the three versions, and by the “reg26c” and “0J4039” markings on the PCB silkscreen (see the right picture above).

Features

  • Input voltage: 2.8 V to 22 V
  • Output voltage: 5 V with 3% accuracy
  • Typical maximum continuous output current: 1 A to 2.5 A, depending on input voltage (see the maximum continuous output current graph below)
  • Typical efficiency of 85% to 95%, depending on input voltage and load (see the efficiency graph below)
  • 10 mA to 20 mA typical no-load quiescent current (see the quiescent current graph below)
  • Input under-voltage lockout and output over-voltage protection
  • Soft-start feature limits inrush current and gradually ramps output voltage
  • Over-current protection and over-temperature shutoff
  • 5 A output current limit
  • Fixed switching frequency of ~500 kHz
  • Double-sided assembly for extra-compact size: 0.35″ × 0.475″ × 0.22″ (8.9 mm × 12.1 mm × 5.6 mm); see the dimension diagram (720k pdf) for more information

5V, 2A Step-Up/Step-Down Voltage Regulator S13V20F5 pinout.

Connections

The step-up/step-down regulator has just three connections: the input voltage (VIN), ground (GND), and the output voltage (VOUT). The input voltage, VIN, powers the regulator. Voltages between 2.8 V and 22 V can be applied to VIN. VOUT is the regulated output voltage.These through-holes are arranged with a 0.1″ spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1″ grid. A 3×1 straight male header strip and a 3×1 right-angle male header strip are included, and you can solder in the one that gives you your desired board orientation. Alternatively, you can solder wires directly to the board for the most compact installations.

5V, 2A Step-Up/Step-Down Voltage Regulator S13V20F5, with hardware.

5V Step-Up/Step-Down Voltage Regulator S13VxF5 units on a breadboard.

Typical efficiency

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns.

Maximum continuous output current

The maximum achievable output current of the regulator varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that the regulators in the S13VxF5 family can deliver continuously at room temperature in still air and without additional heat sinking.

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Quiescent current

The quiescent current is the current the regulator uses just to power itself, and the graph below shows this as a function of the input voltage.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage, the regulator can be destroyed. If you are connecting more than about 15 V, using power leads more than a few inches long, or using a power supply with high inductance, we recommend soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 35 V.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

People often buy this product together with:

5V, 3A Step-Up/Step-Down Voltage Regulator S13V30F5 5V, 3A Step-Up/Step-Down Voltage Regulator S13V30F5
5V, 1A Step-Up/Step-Down Voltage Regulator S13V10F5 5V, 1A Step-Up/Step-Down Voltage Regulator S13V10F5
5V, 1.5A Step-Up/Step-Down Voltage Regulator S13V15F5 5V, 1.5A Step-Up/Step-Down Voltage Regulator S13V15F5

Related Products

5V, 3A Step-Up/Step-Down Voltage Regulator S13V30F5
5V, 1A Step-Up/Step-Down Voltage Regulator S13V10F5
5V, 1.5A Step-Up/Step-Down Voltage Regulator S13V15F5
0.100" (2.54 mm) Female Header: 1x5-Pin, Straight
0.1" (2.54mm) Crimp Connector Housing: 1x5-Pin 10-Pack
Screw Terminal Block: 2-Pin, 3.5 mm Pitch, Side Entry (4-Pack)

Related Categories

S13VxFx Step-Up/Step-Down Voltage Regulators
Step-Up/Step-Down Voltage Regulators
Regulators and Power Supplies
S9V11x Step-Up/Step-Down Voltage Regulators
S8V9Fx Step-Up/Step-Down Voltage Regulators
S18V20x Step-Up/Step-Down Voltage Regulators
Battery Holders
Batteries
Premium Jumper Wires
Wires with Pre-Crimped Terminals
Solderless Breadboards
Electronics Prototyping
0.1″ (2.54 mm) Male Headers
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors