Posts by Jeremy

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

Troubled Child, a full-size autonomous vehicle

Posted by Jeremy on 27 June 2014

The folks from SHARC have converted a Jeep into an autonomous robot for SparkFun’s annual Autonomous Vehicle Competition that took place last weekend. Their robot, Troubled Child, won first place in its class and the “Crowd Favorite” award.

Long-time customer Michael Shimniok (our first blog post — from before we called it a blog — was about a tutorial he wrote for programming AVRs from a Mac) used his 1986 Jeep Grand Wagoneer to explore the back roads of Colorado and Utah before converting it into an autonomous vehicle. The autonomous Jeep uses our D15V35F5S3 switching step-down voltage regulator for powering the on-board electronics, and our dual relay board for running the warning horn and deactivating the pneumatic brake failsafe.

You can check out their final run from inside the vehicle in the video below.

For more information on Troubled Child and the team behind the build, check out their build page or forum post.

Aluminalis, a sixteen-legged walking robot

Posted by Jeremy on 3 June 2014
Aluminalis, a sixteen-legged walking robot

The Beatty family is at it again with their amazing robot builds (if you missed it, check out their Mars Rover). They completed Aluminalis, a sixteen-legged walking robot made mostly out of machined aluminum components.

The video above shows their magnificent sixteen-legged walking robot. It is all controlled by an Arduino Nano and uses Pololu 20D 73:1 metal gearmotors with matching brackets to move all of its aluminum legs.

For more information on Aluminalis, check out its build page.

New product: L3GD20H 3-Axis Gyro Carrier

Posted by Jeremy on 7 February 2014
Tags: new products
New product: L3GD20H 3-Axis Gyro Carrier

We have new gyros fresh out of the oven. No, I’m not talking about a Greek dish. I’m talking about our new L3GD20H 3-axis gyro carrier.

One of the most important measures of a rate gyroscope’s performance is the amount of noise in its output, which is indicated by its noise density specification. Too much noise means that the gyro will be prone to spurious indications of rotation, and if the gyro readings are integrated to track orientation, noise will cause the calculation to drift over time.

Although sensor fusion can help compensate for this drift by combining the gyro data with an absolute reference (like magnetometer data), using a lower-noise gyro is likely to be a more effective way to improve orientation tracking accuracy. In that respect, one of the biggest improvements of the L3GD20H over its predecessor is that it has a 60% lower rate noise density (0.011 dps/√Hz compared to 0.03 dps/√Hz on the L3GD20).

In addition to accuracy and stability improvements, the L3GD20H offers other advantages. Its power consumption is lower and its start-up time is much shorter. A wider range of user-selectable output data rates is available, including lower frequencies that are appropriate for human gesture detection, and a data enable (DEN) pin allows readings to be synchronized with external triggers. The L3GD20H makes all of these features available in a smaller package than previous gyros, which has allowed us to design a correspondingly smaller carrier board for it while still keeping it breadboard-friendly. For more information, see the L3GD20H carrier product page.

If you don’t need the latest and greatest, the L3GD20 is still a nice sensor, and it’s a good time to grab one now that we’ve lowered the price of our L3GD20 carrier to only $14.95 until stock runs out.