
June 2016 DocID029105 Rev 1 1/26

26

UM2039
User Manual

World smallest Time-of-Flight ranging and gesture detection sensor
Application Programming Interface

Introduction

VL53L0X is a ranging and gesture detection sensor.

The purpose of this User Manual is to describe the Application Programming Interface
(API), and the calibration procedures from a user perspective.

The API is a turnkey solution. It consists of a set of C functions which enables fast
development of end user applications, without the complication of direct multiple register
access. The API is structured in a way that it can be compiled on any kind of platform
through a well isolated platform layer.

The API package allows the user to take full benefit of VL53L0X capabilities

Figure 1. VL53L0X ranging sensor module

References

1. VL53L0X Datasheet (DS11555)

www.st.com

http://www.st.com

Contents UM2039

2/26 DocID029105 Rev 1

Contents

1 Overview . 4

2 Initial customer manufacturing calibration . 5

2.1 Data init . 5

2.2 Static Init . 6

2.3 Reference SPADs calibration . 6

2.3.1 Reference SPADs calibration procedure . 6

2.4 Ref (temperature) calibration . 6

2.4.1 Ref calibration procedure . 7

2.5 Offset calibration . 7

2.5.1 Offset calibration procedure . 7

2.6 Cross-talk calibration . 7

2.6.1 Cover window impact on ranging . 7

2.6.2 Cross-talk calibration distance . 8

2.6.3 Cross-talk calibration procedure . 9

3 Range profile phases . 10

3.1 Initialization/calibration phase . 10

3.2 Ranging phase . 10

4 System initialization/calibration . 13

4.1 Data init . 13

4.2 Static Init . 13

4.3 Load calibration data . 13

4.3.1 Reference SPADs . 13

4.3.2 Ref calibration . 13

4.3.3 Offset calibration . 13

4.3.4 Cross-talk correction . 13

4.4 Device mode . 14

4.5 Polling and interrupt mode . 14

5 Ranging . 15

5.1 Start a measurement . 15

DocID029105 Rev 1 3/26

UM2039 Contents

26

5.1.1 Start measurement only . 15

5.1.2 Start measurement and wait for data ready . 15

5.1.3 Start measurement, wait for data ready and report the data 15

5.2 Stop a measurement . 15

5.3 Get a result . 16

5.3.1 Host polling to get the result status . 16

5.3.2 Get measurement . 16

6 API useful additional functions . 17

6.1 Overall timing budget . 17

6.2 Limit settings . 17

6.3 Timed ranging . 18

6.4 API versions and product revision . 18

6.5 API state and API error . 19

6.6 I2C device address . 20

6.7 Reset . 20

6.8 Interrupt settings . 20

7 Example API range profiles . 22

7.1 High accuracy . 22

7.2 Long range . 22

7.3 High speed . 23

8 Acronyms and abbreviations . 24

9 Revision history . 25

Overview UM2039

4/26 DocID029105 Rev 1

1 Overview

VL53L0X API is based on Photonic Abstraction Layer (PAL) specification. API is defined as
the implementation of the PAL.

The API exposes high level functions to be used by the customer application to control the
device.

Note: Full API documentation is available, as part of the API package, in chm and pdf formats.

DocID029105 Rev 1 5/26

UM2039 Initial customer manufacturing calibration

26

2 Initial customer manufacturing calibration

There is an initial, once only, calibration step required that should be applied at customer
level during the manufacturing process. This flow takes into account all parameters (cover
glass, temperature & voltage) from the application.

The customer manufacturing calibration flow is described in Figure 2 below.

Figure 2. Customer manufacturing calibration flow

The following sections detail the API function calls required to perform the initial system
calibration.

2.1 Data init

VL53L0X_DataInit() function is called one time, and it performs the device initialization.

To be called once and only once after device is brought out of reset.

StaticInit

DataInit

Key

Host calls API
function

Host action Target
needed

* : Timings are given for information only, they can vary
depending on the Host capabilities

Calibration
Data result

Calibration
data

Calibration
data

Calibration
data

 Calibration
data

Device
initialization

SPADs
calibration

Temperature
calibration

Offset
calibration

CrossTalk
calibration

~40ms*

~10ms*

~40ms*

~300ms*

~1sec*

Calibration
data - Host

Initial customer manufacturing calibration UM2039

6/26 DocID029105 Rev 1

2.2 Static Init

VL53L0X_StaticInit() function allows to load device settings specific for a given use
case.

2.3 Reference SPADs calibration

In order to optimize the dynamic of the system, the reference SPADs have to be calibrated.

This step is performed on the bare modules during Final Module Test at STMicroelectronics,
and the calibration data (SPAD numbers and type) are stored into the device NVM.

In case a cover glass is used on top of VL53L0X, the reference SPADs have to be re-
calibrated by the customer.

Reference SPAD calibration needs to be done only once during the initial manufacturing
calibration, calibration data should then be stored on the Host.

When calibration is performed and calibration data is available on the Host, the data can be
loaded without re-performing the calibration.

These functions can be called after VL53L0X_StaticInit(). It has to be done before Ref
Calibration, VL53L0X_PerformRefCalibration().

2.3.1 Reference SPADs calibration procedure

No particular conditions have to be used. The calibration does not require specific target or
lighting conditions.
The following procedure has to be performed:

• Call VL53L0X_PerformRefSpadManagement()

– This function outputs the number and type of reference SPADs to be used.

– At the end of this function, the reference SPADs number and type is programmed
in the device.

• Host has to store these 2 values. See Section 4.3.1 for loading calibration data from
Host.

Note: If a highly reflective target is covering the VL53L0X module during reference SPAD
calibration, too much signal will be received on the reference array and the calibration may
fail, reporting a ‘-50’ status code. In this case, user has to remove the target away from
device

2.4 Ref (temperature) calibration

Ref calibration is the calibration of two parameters (VHV and phase cal) which are
temperature dependent. These two parameters are used to set the device sensitivity.

Ref calibration allows the adjustment of the device sensitivity when temperature varies.

Ref calibration must be performed during initial manufacturing calibration, it should be
performed again when temperature varies more than 8degC compared to the initial
calibration temperature.

If temperature does not vary, the ref calibration data can be loaded without re-performing
the calibration procedure.

DocID029105 Rev 1 7/26

UM2039 Initial customer manufacturing calibration

26

2.4.1 Ref calibration procedure

User has two options:

1. Perform the calibration after VL53L0X_PerformRefSPADManagement,by calling
VL53L0X_PerformRefCalibration().

2. If user wants to improve the boot time, they can load only the calibration parameters
after VL53L0X_PerformRefSPADManagement by using
VL53L0X_SetRefCalibration(). This assumes that user has previously
performed a calibration and stored the two parameters in the Host memory. See
Section 4.3.2.

There is no specific setup needed to perform ref calibration. It has only to be done before
offset and cross-talk calibrations, after Reference SPADs management and before the first
ranging is performed.

2.5 Offset calibration

Range offset is performed during Final Module Test at STMicroelectronics, and the offset is
stored into the device NVM.

For some cases, it can appear that the value programmed in the NVM is not correct. This
can happen when the customer is using a cover window. In this case, ranging can be
affected by an offset, due to the cover window and so the customer should perform a new
offset calibration on its manufacturing line.

2.5.1 Offset calibration procedure

• Recommendation is to use a white (88%reflectance) target at 100mm, in a dark
environment. Target distance can be changed depending on customer’s constraints,
but it has to be chosen in the linear part of the ranging curve.

• Both Reference SPADs and Ref calibrations have to be performed before calling offset
calibration.

• A dedicated API function has to be called to compute the offset:
VL53L0X_PerformOffsetCalibration().

• The output of this function is the offset calibration value, in micrometers.

• Offset calibration value has to be stored into Host memory. See Section 4.3.3 for
loading calibration data from Host.

2.6 Cross-talk calibration

This section presents the effect of the cover window on ranging, and proposes a method for
cross-talk calibration.

2.6.1 Cover window impact on ranging

The ranging performance is dependent on the quality of the cover window. Figure 3 shows
the cover window impact on ranging with low, medium and high cross-talk.

The ideal curve (with no cover window) is the green dotted line.

Initial customer manufacturing calibration UM2039

8/26 DocID029105 Rev 1

Figure 3. Cover window impact on ranging

The cross-talk correction is basically a weighted gain applied to the ranging data, based on
a calibration result.

Correcting low cross-talk is easier than correcting high cross-talk.

2.6.2 Cross-talk calibration distance

The calibration distance is dependent on the quality of the cover window. Low cross-talk or
high cross-talk calibration cannot be performed at the same distance.

The starting point of the valid distance to perform cross-talk calibration is when the actual
signal starts to deviate from the ideal curve.

If the cross-talk calibration is performed in the linear area of the ranging curve, the
correction factor will be too low, and the correction will have almost no effect.

The valid distance ends when the signal is starting to be too low (ranging distance starting to
decrease).

Figure 4: Cross-talk calibration valid distances gives an example of exclusion areas where
the cross-talk correction should not be performed.

In this figure, the valid distance for cross-talk calibration is from point A to point B.

DocID029105 Rev 1 9/26

UM2039 Initial customer manufacturing calibration

26

Figure 4. Cross-talk calibration valid distances

2.6.3 Cross-talk calibration procedure

The following procedure has to be performed:

• Perform Offset calibration, refer to Section 2.5: Offset calibration

• Choose the calibration distance, based on a ranging with cover window to be used, as
described in Section 2.6.2: Cross-talk calibration distance.

• Use a grey 17% reflectance target.

• Call the API calibration function: VL53L0X_PerformXTalkCalibration().

• The input of this function is the calibration distance in millimeters.

• The output is the cross-talk factor. This has to be stored on Host memory.

• The function applies and enables the cross-talk correction.

• Store the cross-talk factor on the Host memory. See Section 4.3.4 for loading
calibration data from Host.

Note: The API function VL53L0X_PerformXTalkCalibration() performs several
measurements, means and computation. Nothing has to be done on the Host side, except
calling this function, all is performed by the API.

Range profile phases UM2039

10/26 DocID029105 Rev 1

3 Range profile phases

This section describes the 3 phases that are required to perform the first range
measurement after reset, using the VL53L0X.

There are 3 phases:

• Initialization & load calibration data

• Ranging

• Digital housekeeping - see Section 6.2: Limit settings.

3.1 Initialization/calibration phase

The initialization/calibration flow is described in Figure 5: Initialization flow on page 11.

All initialization functions are defined in Section 4: System initialization/calibration on
page 13.

initialization/calibration phase should be run only after reset or system/setup change.

3.2 Ranging phase

The ranging flow is described in Figure 6: VL53L0X API ranging flow on page 12.

The first range measurement (after reset) has to be preceded by an initialization and
calibration flow.

Basic functions used in the ranging flow are described in Section 5: Ranging on page 15.

DocID029105 Rev 1 11/26

UM2039 Range profile phases

26

Figure 5. Initialization flow

StaticInit

DataInit

Key

Host calls API
function

Host action

RANGING

Additional or
Optional Settings

SetDeviceMode

SetGPIO

* : Timings are given for information only, they
can vary depending on the Host capabilities

Calibration
data - Host

Calibration
data

Calibration
Data

Calibration
data

Calibration
data

Device
initialization

Calibration data
loading

~40ms*

System settings

~1ms*

~1ms*

Range profile phases UM2039

12/26 DocID029105 Rev 1

Figure 6. VL53L0X API ranging flow

Ge
tR

an
gi

ng
M

ea
su

re
m

en
tD

at
a

Ge
tM

ea
su

re
m

en
Da

ta
Re

ad
y Ge

tR
an

gi
ng

M
ea

su
re

m
en

tD
at

a

In
te

rru
pt

 re
ce

iv
ed

Ge
tR

an
gi

ng
M

ea
su

re
m

e
nD

at
a

In
te

rru
pt

 cl
ea

re
d

Ge
tR

an
gi

ng
M

ea
su

re
m

en
tD

at
a

In
te

rru
pt

 re
ce

iv
ed

Ge
tR

an
gi

ng
M

ea
su

re
m

en
tD

at
a

In
te

rru
pt

 cl
ea

re
d

Ke
y

Ho
st

 ca
lls

 A
PI

fu
nc

tio
n

Ho
st

 a
ct

io
n

Ge
tM

ea
su

re
m

en
Da

ta
Re

ad
y

Ge
tS

to
pC

om
pl

et
ed

St
at

us

Ge
tR

an
gi

ng
M

ea
su

re
m

en
tD

at
a

CO
NT

IN
UO

US
 /

SI
NG

LE
CO

NT
IN

UO
US

 &
 T

IM
ED

SI
NG

LE

1-
 S

ta
rt

Si
ng

le
M

ea
s

2-
 W

ai
tD

at
aR

ea
dy

(o

n
Ra

ng
in

g
St

at
us

)
3-

 G
et

Va
lu

e

HO
ST

 /
AP

I

Da
ta

PO
LL

IN
G

/ I
NT

ER
RU

PT
PO

LL
IN

G

HO
ST

 P
OL

LI
NG

AP
I P

OL
LI

NG
AP

I P
OL

LI
NG

IN
TE

RR
UP

T

1-
 S

ta
rt

Sin
gl

eM
ea

s
2-

W
ai

tD
at

aR
ea

dy

(o
n

Ra
ng

in
g

St
at

us
)

Da
ta

St
ar

tS
in

gl
eR

an
gi

ng HO
ST

 P
OL

LI
NG

Da
ta

St
ar

tS
in

gl
eM

ea
s

Da
ta

IN
TE

RR
UP

T
PO

LL
IN

G

Da
ta

St
ar

tC
on

tin
uo

us

Da
ta

IN
T

NG

Po
lli

ng
/in

te
rru

pt

En
d

CO
NT

IN
UE

En
d

CO
NT

IN
UE

St
ar

tC
on

tin
uo

us

Da
ta

 re
su

lt
AP

I in
te

rn
al

 a
ct

io
n

HO
ST

 P
OL

LI
NG

HO
ST

 P
OL

LI
NG

Cl
ea

r i
nt

er
ru

pt

Da
ta

DocID029105 Rev 1 13/26

UM2039 System initialization/calibration

26

4 System initialization/calibration

The following section shows the API function calls required to perform the system
initialization, before starting the first range measurement after reset.

4.1 Data init

VL53L0X_DataInit() function is called one time, and it performs the device initialization.

To be called once and only once after device is brought out of reset.

4.2 Static Init

VL53L0X_StaticInit() function allows to load device settings specific for a given use
case.

4.3 Load calibration data

4.3.1 Reference SPADs

VL53L0X_SetReferenceSpads() and VL53L0X_GetReferenceSpads() can be used
to set/get the number and type of reference SPADs.

If the calibration has not been performed (using
VL53L0X_PerformRefSpadManagement()), or if the Host has not programmed the
number and type of SPADs (using VL53L0X_SetReferenceSpads()),
VL53L0X_GetReferenceSpads() will return the number and type of reference SPADs
programmed into the device NVM.

4.3.2 Ref calibration

Load calibration parameters by using VL53L0X_SetRefCalibration(). This assumes
that user has previously performed a calibration and stored the two parameters in the Host
memory.

4.3.3 Offset calibration

Host has to load the offset calibration data at each startup of the device.

The offset value expressed in micrometers has to be set in the device using API function:
VL53L0X_SetOffsetCalibrationDataMicroMeter()

4.3.4 Cross-talk correction

In a standard usage, the Host will have to program the cross-talk correction factor and
enable the cross-talk correction.

The correction factor is the result of the calibration and has to be stored in the Host.

System initialization/calibration UM2039

14/26 DocID029105 Rev 1

Cross-talk correction value can be set using the API function
VL53L0X_SetXTalkCompensationRateMegaCps(), and is enabled using
VL53L0X_SetXTalkCompensationEnable().

4.4 Device mode

VL53L0X_SetDeviceMode() selects one of the following modes of operation:

• Single Ranging

• Continuous Ranging

• Continuous Timed Ranging

VL53L0X_GetDeviceMode()is used to know which mode is actually programmed.

These modes are described in the VL53L0X datasheet.

4.5 Polling and interrupt mode

Once a measurement is ready, the Host either receives an interrupt or poll on a
measurement status.

VL53L0X_SetGPIOConfig() function configures the system interrupt mode.

Interrupt options and modes of operation are described in a Section 5: Ranging.

DocID029105 Rev 1 15/26

UM2039 Ranging

26

5 Ranging

5.1 Start a measurement

The API allows to get a measurement in different ways, depending on the user
requirements:

• Start measurement only

• Start measurement and wait for data ready

• Start measurement, wait for data ready and report the data

5.1.1 Start measurement only

VL53L0X_StartMeasurement() function must be called to start a measurement. The
device will start a measurement using the chosen mode (single or continuous)

5.1.2 Start measurement and wait for data ready

VL53L0X_PerformSingleMeasurement() function starts a measurement and waits for
data ready, by polling on the ranging status or on the interrupt status.

The 2 following API functions are called internally:

• VL53L0X_StartMeasurement()

• VL53L0X_GetMeasurementDataReady()

5.1.3 Start measurement, wait for data ready and report the data

VL53L0X_PerformSingleRangingMeasurement() function starts a measurement,
waits for data ready (by polling on the ranging status or on the interrupt status) and reports
the data. This function also clears the interrupt after the measurement.

The 3 following API functions are called internally:

• VL53L0X_PerformSingleMeasurement()

• VL53L0X_GetRangingMeasurementData()

• VL53L0X_ClearInterruptMask()

5.2 Stop a measurement

In continuous mode, Host can stop the measurement by calling
VL53L0X_StopMeasurement() function.

If the stop request occurs during a range measurement, then the measurement is
completed before stopping. If it occurs during the inter-measurement period then the stop
command takes immediate effect.

If the user wants to call an additional API function after the stop command (for example ref
temperature calibration if required - see Section 2.4), they have to ensure that the current
ranging measurement is finished first.

Therefore it is recommended to call VL53L0X_GetStopCompletedStatus() and poll
this function to ensure that the ranging measurement is completed, before calling additional
API functions.

Ranging UM2039

16/26 DocID029105 Rev 1

5.3 Get a result

5.3.1 Host polling to get the result status

VL53L0X_GetMeasurementDataReady() function allows the Host to get a status on the
ongoing measurement.

5.3.2 Get measurement

VL53L0X_GetRangingMeasurementData() function returns the ranging data.

The function returns a buffer which contains the following:

RangeMilliMeter

RangeDMaxMilliMeter:

SignalRateRtnMegaCps

AmbientRateRtnMegaCps

EffectiveSpadRtnCount

RangeStatus: Refer to Table 1

Ranging status string is available by calling VL53L0X_GetRangeStatusString()
function

Note: VL53L0X_GetDeviceErrorStatus()function shall be called only for debug purposes. It
should not be used, unless requested by ST to customer.

Note: SignalRateRtnMegaCps includes the crosstalk correction (if the correction is enabled). If the
user wants to get the signal rate without crosstalk correction, they can call
VL53L0X_GetTotalSignalRate() function.

Table 1. Range Status

RangeStatus
value

RangeStatus
String

Comment

0 Range Valid Ranging measurement is valid

1 Sigma Fail
Sigma fail will trigger particularly in ambient light, when the amount of ambient
light is adding too much noise onto the ranging measurement.

2 Signal Fail
Signal fail will trigger when the return signal is too low to give enough
confidence on the range measured. The limit will be given by either the signal
limit or the RIT (Range Ignore Threshold).

3 Min Range Fail Not enabled as default.

4 Phase Fail
Phase fail will trigger when wraparound conditions are detected or when noise
on signal is too high.

5 Hardware Fail Hardware Fail will trigger if a VCSEL failure, or VHV fail are detected.

255 No Update This error should not trigger.

DocID029105 Rev 1 17/26

UM2039 API useful additional functions

26

6 API useful additional functions

6.1 Overall timing budget

The timing budget is the time allocated by the user to perform one range measurement. The
API takes care of splitting this timing budget into dedicated sub steps in the ranging process.

The user only has to set the overall timing budget in micro seconds, and the function
allocates the timings internally. A check is performed to know which part of the scheduler is
enabled or disabled, in order to maximize Final Range timing budget.

VL53L0X_SetMeasurementTimingBudgetMicroSeconds()and
VL53L0X_GetMeasurementTimingBudgetMicroSeconds()

The default timing budget value is 33ms, while the minimum is 20ms.

Example of use:

Status =
VL53L0X_SetMeasurementTimingBudgetMicroSeconds(pMyDevice,66000) sets
the overall timing budget to 66ms.

Note: Increasing the timing budget increases the range measurement accuracy.

That is: x N on timing budget => standard deviation / square root of N.

For example is the timing budget is increased by a factor of x 2, then the range
measurement standard deviation decreases by square root of 2.

6.2 Limit settings

User can enable/disable limit checks and values.

Disabling or relaxing these limits can allow longer ranging, in this case, standard deviation
will increase and measurement outliers will be received by the Host.

Applicable limits are:

• Sigma:

VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE

Sigma is the time difference (shift) between the reference and return SPAD arrays. As
Sigma represents time of flight and this translates to distance, this parameter is expressed
in mm.

• Return Signal Rate

VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE

Return signal rate measurement, expressed in MCPS. This represents the amplitude of the
signal reflected from the target and detected by the device.

• Range Ignore Threshold

VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD

Signal rate minimum threshold. Measurements with signal rates below this value are
ignored. This ensures that false measurements are not made due to reflection from the
housing.

API useful additional functions UM2039

18/26 DocID029105 Rev 1

Use VL53L0X_SetLimitCheckEnable() and VL53L0X_GetLimitCheckEnable() to
enable/disable a limit.

The limit value is set using VL53L0X_SetLimitCheckValue() and
VL53L0X_GetLimitCheckValue().

Two additional functions give access to the current value and state against which the limit is
compared:

VL53L0X_GetLimitCheckCurrent() and VL53L0X_GetLimitCheckStatus()

Table 2 gives the default limit states and values.

Example of use:

Status = VL53L0X_SetLimitCheckEnable(pMyDevice,
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);

Status = VL53L0X_SetLimitCheckValue(pMyDevice,
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 0.40*65536);

The current sigma value (the actual one, not the limit) can be accessed by calling:

Status = VL53L0X_GetLimitCheckCurrent(pMyDevice,
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, &Sigma);

6.3 Timed ranging

When the ranging mode is set to timed ranging, user has to define the period of time
between two consecutive measurements.

VL53L0X_SetInterMeasurementPeriodMilliSeconds()and
VL53L0X_GetInterMeasurementPeriodMilliSeconds()

6.4 API versions and product revision

User can get the API version and the PAL specification version.

VL53L0X_GetVersion()

VL53L0X_GetPalSpecVersion()

VL53L0X_GetProductRevision() functions returns the device cut ID.

Table 2. Default limit states and values

Limit ID Default limit state Default limit value

Sigma Enabled 18mm

Return Signal Enabled 0.25Mcps

Range Ignore Threshold Disabled
N x Xtalk Mcps/spad

where N = 1.5 by default

DocID029105 Rev 1 19/26

UM2039 API useful additional functions

26

6.5 API state and API error

VL53L0X_GetPalState() function gives the state of the API. All different states are
given in Table 3.

VL53L0X_GetPalStateString() function returns the status string.

An API error code is reported when any API function is called. Possible values for API errors
are described in Table 4.

VL53L0X_GetPalErrorString() function returns the error string.

Table 3. API state description

API state
value

API state string Comment

0 POWERDOWN state Device is in HW reset

1 Wait for StaticInit State Device is initialized and wait for static initialization

2 STANDBY State Device is in low power Standby mode

3 IDLE State Not used

4 RUNNING State Device is performing measurement

98 UNKNOWN State Device is in unknown state and needs to be rebooted

99 ERROR State Device is in error state and needs to be rebooted

Table 4. API error values and error strings description

API
error
value

API error string Occurrence Possible root cause

0 No Error - -

-1
Calibration
warning error

Not implemented, cannot happen N/A

-2 Min clipped error Not implemented, cannot happen N/A

-3 Undefined error Not implemented, cannot happen N/A

-4
Invalid parameters
error

Parameter passed is invalid or
out of range

Wrong API programming (wrong setting used), or
I2C transaction corrupted

-5
Not supported
error

Function is not supported in
current mode or configuration

Wrong API programming (non implemented
function called), or I2C transaction corrupted

-6 Range error
Device reports a ranging error
interrupt status

Wrong API programming (syntax error), or no
target present during offset calibration, or I2C
transaction corrupted

-7 Time out error Aborted due to time out
Device is functionally failing, or I2C transaction
corrupted

-8
Mode not
supported error

Requested mode is not
supported by the device

Wrong API programming (non existent mode
called), or I2C transaction corrupted

-9 Buffer too small Cannot happen N/A

API useful additional functions UM2039

20/26 DocID029105 Rev 1

6.6 I2C device address

User can change the I2C address of the device.

VL53L0X_SetDeviceAddress()

6.7 Reset

This functions resets the device and waits for the boot up.

VL53L0X_ResetDevice()

6.8 Interrupt settings

Use VL53L0X_SetGpioConfig()and VL53L0X_GetGpioConfig() to set/get the
functionality of the interrupt.

Options are:

• No Interrupt

• Level Low (value < thresh_low)

• Level High (value > thresh_high)

• Out Of Window (value < thresh_low OR value > thresh_high)

There is a dedicated procedure embedded in the API for when the interrupt threshold is
programmed to be larger than 254mm and also set to continuous or continuous timed mode.
In this case some specific tuning parameters are loaded by the API at each ranging start
which will introduce a delay of a few milliseconds (depending on the host I2C performance)
to the very first ranging measurement.

-10 GPIO not existing
User tried to set up a non-existing
GPIO pin

Wrong API programming (wrong setting used), or
I2C transaction corrupted

-11
GPIO functionality
not supported

Unsupported GPIO functionality
Wrong API programming (wrong setting used), or
I2C transaction corrupted

-20
Control Interface
Error

Error reported from IO functions
(comm error)

 I2C comm error

-30
Invalid Command
Error

Cannot happen N/A

-40
Division by zero
Error

Cannot occur in cut1.1 N/A

-50
Reference SPAD
Init Error

Error during reference SPAD
initialization

Bad NVM programming, module aperture blocked
with high reflective target, I2C transaction
corrupted (wrong programming)

-99
Not implemented
error

Not implemented N/A

Table 4. API error values and error strings description (continued)

API
error
value

API error string Occurrence Possible root cause

DocID029105 Rev 1 21/26

UM2039 API useful additional functions

26

In single ranging mode, the maximum programmable threshold is 254mm.

The interrupt threshold behaviour is described in Table 5.

VL53L0X_SetInterruptThresholds()and
VL53L0X_GetInterruptThresholds()allow to set/get the interrupt thresholds.

After reading a measurement, host has to clear the interrupt by
using the following function.

VL53L0_ClearInterruptMask()

VL53L0X_ClearInterruptMask()and VL53L0X_GetInterruptMaskStatus()allow
to set/get the interrupt.

Example code is provided within the API release to help the implementation of interrupt

settings on the host.

Note: In Table 5, ranging mode all = continuous, continuous timed and single ranging

Note: There is no interrupt generated if no target is detected in threshold high mode (with any
threshold value).

Table 5. Interrupt threshold behaviour

Interrupt options Ranging distance Threshold value Ranging mode GPIO state

Level Low

> thresh_low - all no interrupt

< thresh_low
thresh_low <

254mm
all interrupt at GPIO

< thresh_low
thresh_low >

254mm
continuous or

continuous timed
interrupt at GPIO

< thresh_low
thresh_low >

254mm
single

no interrupt
(limitation)

Level High

< thresh_high - all no interrupt

> thresh_high
thresh_high <

254mm
all interrupt at GPIO

> thresh_high
thresh_high >

254mm
continuous or

continuous timed
interrupt at GPIO

> thresh_high
thresh_high >

254mm
single

no interrupt
(limitation)

Example API range profiles UM2039

22/26 DocID029105 Rev 1

7 Example API range profiles

There are 4 range profiles available via API example code.

7.1 High accuracy

The following settings have to be applied, before ranging:

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetLimitCheckValue(pMyDevice,
VL53L0_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
(FixPoint1616_t)(0.25*65536));
}

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetLimitCheckValue(pMyDevice,
VL53L0_CHECKENABLE_SIGMA_FINAL_RANGE,
(FixPoint1616_t)(18*65536));
}

if (Status == VL53L0_ERROR_NONE) {

Status =
VL53L0_SetMeasurementTimingBudgetMicroSeconds(pMyDevice,
200000);
}

7.2 Long range

The following setting have to be applied, before ranging:

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetLimitCheckValue(pMyDevice,
VL53L0_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
(FixPoint1616_t)(0.1*65536));
}

Table 6. Example API range profiles

Timing budget
Typical max

range
Typical application

Default mode 30ms 1.2m (white target) standard

High accuracy 200ms 1.2m (white target) precise measurement

Long range 33ms 2m (white target)
long ranging, only for

dark conditions

High Speed 20ms 1.2m (white target)
high speed where

accuracy is not priority

DocID029105 Rev 1 23/26

UM2039 Example API range profiles

26

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetLimitCheckValue(pMyDevice,
VL53L0_CHECKENABLE_SIGMA_FINAL_RANGE,
(FixPoint1616_t)(60*65536));
}

if (Status == VL53L0_ERROR_NONE) {

Status =
VL53L0_SetMeasurementTimingBudgetMicroSeconds(pMyDevice,
33000);
}

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetVcselPulsePeriod(pMyDevice,
VL53L0_VCSEL_PERIOD_PRE_RANGE, 18);
}

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetVcselPulsePeriod(pMyDevice,
VL53L0_VCSEL_PERIOD_FINAL_RANGE, 14);
}

7.3 High speed

The following setting have to be applied, before ranging:

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetLimitCheckValue(pMyDevice,
VL53L0_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
(FixPoint1616_t)(0.25*65536));
}

if (Status == VL53L0_ERROR_NONE) {

Status = VL53L0_SetLimitCheckValue(pMyDevice,
VL53L0_CHECKENABLE_SIGMA_FINAL_RANGE,
(FixPoint1616_t)(32*65536));
}

if (Status == VL53L0_ERROR_NONE) {

Status =
VL53L0_SetMeasurementTimingBudgetMicroSeconds(pMyDevice,
20000);
}

Acronyms and abbreviations UM2039

24/26 DocID029105 Rev 1

8 Acronyms and abbreviations

Table 7. Acronyms and abbreviations

Acronym/ abbreviation Definition

I2C Inter-integrated circuit (serial bus)

NVM Non volatile memory

SPAD Single photon avalanche diode

VCSEL Vertical cavity surface emitting laser

PAL Photonic Abstraction Layer

API Application Program Interface

FMT Final Module Test

XTALK Cross-talk

DocID029105 Rev 1 25/26

UM2039 Revision history

26

9 Revision history

Table 8. Document revision history

Date Revision Changes

02-Jun-2016 1 Initial release.

UM2039

26/26 DocID029105 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	Figure 1. VL53L0X ranging sensor module
	1 Overview
	2 Initial customer manufacturing calibration
	Figure 2. Customer manufacturing calibration flow
	2.1 Data init
	2.2 Static Init
	2.3 Reference SPADs calibration
	2.3.1 Reference SPADs calibration procedure

	2.4 Ref (temperature) calibration
	2.4.1 Ref calibration procedure

	2.5 Offset calibration
	2.5.1 Offset calibration procedure

	2.6 Cross-talk calibration
	2.6.1 Cover window impact on ranging
	Figure 3. Cover window impact on ranging

	2.6.2 Cross-talk calibration distance
	Figure 4. Cross-talk calibration valid distances

	2.6.3 Cross-talk calibration procedure

	3 Range profile phases
	3.1 Initialization/calibration phase
	3.2 Ranging phase
	Figure 5. Initialization flow
	Figure 6. VL53L0X API ranging flow

	4 System initialization/calibration
	4.1 Data init
	4.2 Static Init
	4.3 Load calibration data
	4.3.1 Reference SPADs
	4.3.2 Ref calibration
	4.3.3 Offset calibration
	4.3.4 Cross-talk correction

	4.4 Device mode
	4.5 Polling and interrupt mode

	5 Ranging
	5.1 Start a measurement
	5.1.1 Start measurement only
	5.1.2 Start measurement and wait for data ready
	5.1.3 Start measurement, wait for data ready and report the data

	5.2 Stop a measurement
	5.3 Get a result
	5.3.1 Host polling to get the result status
	5.3.2 Get measurement
	Table 1. Range Status

	6 API useful additional functions
	6.1 Overall timing budget
	6.2 Limit settings
	Table 2. Default limit states and values

	6.3 Timed ranging
	6.4 API versions and product revision
	6.5 API state and API error
	Table 3. API state description
	Table 4. API error values and error strings description

	6.6 I2C device address
	6.7 Reset
	6.8 Interrupt settings
	Table 5. Interrupt threshold behaviour

	7 Example API range profiles
	Table 6. Example API range profiles
	7.1 High accuracy
	7.2 Long range
	7.3 High speed

	8 Acronyms and abbreviations
	Table 7. Acronyms and abbreviations

	9 Revision history
	Table 8. Document revision history

