
PIC-Based, Obstacle-Avoiding
Robot

1. Introduction . 2
2. Materials and Tools . 3
3. Hardware Construction . 5
4. Software for the PIC . 7
5. Results and Conclusion . 10

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

Page 1 of 10

http://www.pololu.com/docs/0J2
http://www.pololu.com/docs/0J2

1. Introduction

One of the biggest challenges in building your own robot is controlling its motors. You can find new or surplus
motors and gearboxes in many places, and low-cost microcontrollers and books on how to use them abound.
However, microcontrollers cannot directly drive DC motors, leaving robotics beginners with the possibly
overwhelming challenge of building their own motor controller. This task is even more complicated if the motors
require bidirectional operation and speed control.

This project demonstrates how easy it is to make a simple robot controller using the Pololu micro dual serial motor
controller [http://www.pololu.com/catalog/product/410] with a Microchip [http://www.microchip.com/] PIC16F628
microcontroller. We then use the circuit with the Pololu robot chassis [http://www.pololu.com/catalog/product/250] to
create a small, obstacle-avoiding robot that can serve as a starting point for more advanced projects. The low-voltage
operation of the motor controller allows a small, 3.6 V cordless telephone battery pack to power the entire robot.
Since the motor controller only requires two of the PIC’s 13 I/O lines, there is plenty of opportunity for expansion.

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

1. Introduction Page 2 of 10

http://www.pololu.com/catalog/product/410
http://www.pololu.com/catalog/product/410
http://www.microchip.com/
http://www.pololu.com/catalog/product/250

2. Materials and Tools
Here are the essential parts you will need if you want to build a similar robot. These items are available either from
Pololu or from most electronic component distributors.

• Pololu micro dual serial motor controller [http://www.pololu.com/catalog/product/410]

• Pololu robot chassis plate [http://www.pololu.com/catalog/product/250]

• Parts to build the robot chassis, which come with our chassis combination kits:
◦ Tamiya twin-motor gearbox [http://www.pololu.com/catalog/product/61] (Tamiya #70097)

◦ Tamiya ball caster [http://www.pololu.com/catalog/product/66] (Tamiya #70144)

◦ Tamiya truck tires [http://www.pololu.com/catalog/product/65] (Tamiya #70101)

• PIC16F627 or PIC16F628 microcontroller in a DIP (dual in-line package) from
Microchip [http://www.microchip.com/]. The 16F62X microcontrollers are the only 18-pin PICs that have a built
in UART (universal asynchronous receiver and transmitter), which makes transmitting data serially (to the
motor controller) very simple. The code presented in this project should be portable to any other PIC with a
hardware UART; with the other PICs, you would have to write your own serial routines (which isn’t that bad
since you only need to transmit, and the motor controller should handle any baud rate you come up with).

• Clock source for the PIC. We used a 4 MHz ceramic resonator with built-in capacitors; any crystal,
resonator, or oscillator in the 1-20 MHz range should be fine.

• 18-pin DIP socket for the PIC. You may also want a socket for your motor controller; a crude way of
obtaining a 9-pin SIP (single in-line package) socket is to cut an 18-pin DIP socket in half.

• Two long-lever, snap-action switches for use as bumpers switches.

• 3.6 V, 650 mAh cordless telephone battery pack (or three AA size NiCd or NiMH batteries in a battery
holder). Cordless phone batteries are available in many consmer electronics stores (e.g. Radio Shack, Best
Buy) and discount stores (e.g. Wal-Mart) for around $10, making them a great power source for small robots.

• General-purpose prototyping PC board [http://www.pololu.com/catalog/category/32] (or proto board) with space
for two 18-pin DIP sockets, the ceramic resonator, and whatever other electronics you might want to fit.
Such boards are available from most electronics component stores, including Radio Shack (e.g. part number
276-150A). To avoid soldering, this project could also be done using a small wireless
breadboard [http://www.pololu.com/catalog/product/350], such as the one used in project
2 [http://www.pololu.com/docs/0J3].

• Hook-up wire [http://www.pololu.com/catalog/product/354] and solder for making all of your connections.

• Double-sided foam tape provides a quick way of temporarily mounting items such as the battery pack.
Alternatively, you could use standard mounting hardware or cable ties for fixing your components to the
chassis.

You will probably also want to use the following:

• Pushbutton switch and 10k resistor for a reset circuit

• Two 0.1 uF capacitors to solder across the motor terminals

• Power switch

You will also need these basic tools:

• Soldering iron [http://www.pololu.com/catalog/category/5]

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

2. Materials and Tools Page 3 of 10

http://www.pololu.com/catalog/product/410
http://www.pololu.com/catalog/product/250
http://www.pololu.com/catalog/product/61
http://www.pololu.com/catalog/product/66
http://www.pololu.com/catalog/product/65
http://www.microchip.com/
http://www.pololu.com/catalog/category/32
http://www.pololu.com/catalog/product/350
http://www.pololu.com/catalog/product/350
http://www.pololu.com/docs/0J3
http://www.pololu.com/docs/0J3
http://www.pololu.com/catalog/product/354
http://www.pololu.com/catalog/category/5

• Diagonal cutters [http://www.pololu.com/catalog/product/159]

• Wire strippers [http://www.pololu.com/catalog/product/161]

• Scissors

• Phillips screwdriver [http://www.pololu.com/catalog/product/158] (for building the gearbox and ball caster)

• Hot glue gun (optional)

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

2. Materials and Tools Page 4 of 10

http://www.pololu.com/catalog/product/159
http://www.pololu.com/catalog/product/161
http://www.pololu.com/catalog/product/158

3. Hardware Construction
Begin by assembling the robot chassis. You should mount the battery pack on
the rear of the robot, above the ball caster, to balance the weight of the
motors. Double-sided foam tape is a convenient method of attaching the
battery pack; it can also be secured with cable-ties by using the rectangular
holes on both sides of the ball caster. If you are using a battery holder, you
can easily drill mounting holes through the holder or the chassis if existing
holes do not line up.

When soldering to the motor leads, be careful not to damage them. Soldering
a small capacitor across the motor leads can improve the performance of the
motor controller and lower interference with other electronics on your robot.
We used a 0.1 uF ceramic capactitor.

The picture to the right shows a resistor in series with the capacitor. In
general, such a resistor limits the current wasted by the PWM (pulse width
modulation) in charging and discharging the capacitor. However, the
relatively low, 600 Hz PWM frequency of the motor controller makes this
resistor unnecessary; we saw no added benefit when we added the resistor.

Because the motor leads are fragile, it is important to provide strain relief for
the wires you connect to the motor. For our example, we hot-glued the leads
to the side of the gearbox, as shown in the picture. Securing the wires this
way will allow you to manipulate the other end of the wires without worrying
about breaking off the motor leads. Note that the glued wires prevent removal
of the motors from the gearbox. Hot glue has the advantage of not being
entirely permanent; if necessary, it’s not too difficult to free the wires.

We have kept the motor capacitor exposed for the purposes of these pictures,
but it’s a good idea to protect them as much as possible, especially since they
are low to the ground and on the front end of the robot.

To keep this project as simple as possible, we limit our sensors to two snap-
action swtiches for front collision detection. Of course, you can add more
sophisticated sensors for more interesting behavior.

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

3. Hardware Construction Page 5 of 10

As you can see in the picture to the right, there isn’t much to the electronics.
We soldered the circuit on a small perforated board, but you can also use a
solderless breadboard. The small pushbutton switch on the top right and the
resistor below it make up an optional reset circuit. The only other components
are the PIC, the resonator (lower right), and the motor controller. No
additional resistors are required for the bump switches because we use the
PIC’s internal pull-up resistors on port B.

The main reason for using the PIC16F628 is that it has a hardware UART; to make use of it, we must connect the
TX pin, pin RB2, to the motor controller’s serial input. Connecting the motor controller reset pin is optional, but
using it prevents any baud rate detection problems during power-up. If you don’t have any extra I/O lines, you can
connect the reset input to the PIC reset circuit.

Note that the bumper switches must be connected to port B pins in order to make use of the PIC’s internal pull-up
resistors. Nine of the PIC I/O lines are unused and available for expansion. As you add additional electronics, you
may need to add 0.1 uF bypass capacitors from power to ground to keep the power supply clean. As you can see in
the picture to the right, there isn’t much to the electronics. We soldered the circuit on a small perforated board, but
you can also use a solderless breadboard. The small pushbutton switch on the top right and the resistor below it
make up an optional reset circuit. The only other components are the PIC, the resonator (lower right), and the motor
controller. No additional resistors are required for the bump switches because we use the PIC’s internal pull-up
resistors on port B.

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

3. Hardware Construction Page 6 of 10

4. Software for the PIC
Using the motor controller is very simple, even if you program your PIC in assembly. This sample program makes
our little robot drive forward until it hits an obstacle; once it does, it backs up, turns away from the side where the
collision occured, and resumes moving forward. All of the code below uses the standard assembly language
supported by Microchip’s MPLAB development software. Even if you are using a different assembler or compiler,
this example should give you a good start.

First, we name the registers and bits that we will use throughout the rest of the program:

;****** Equates **
Bank0RAM equ 020h ;start of bank 0 RAM area
SMC_PORT equ PORTB ;motor controller on port b
BMP_PORT equ PORTB ;bumper switches on port b
;bit equates
SOUT equ 2 ;serial output to motor controller
SRST equ 3 ;to reset pin on motor controller
LBMP equ 4 ;left bumper switch
RBMP equ 5 ;right bumper switch
;****** Variables **

cblock Bank0RAM
ARG1L
ARG1H
BYTE3 ;for storing bytes 3 and 4 in the serial protocol
BYTE4
endc

It’s also convenient to have a subroutine for making precise pauses. This routine takes the 16-bit value in ARG1H
and ARG1L and delays for approximately that many milliseconds. Of course, the length of the delay is dependent on
the clock speed, which is 4 MHz in our example.

milliDelay
movlw .250 ;outer loop
addlw 0xFF ;inner loop
btfss STATUS,Z
goto $-2 ;goto inner loop
movlw 1 ;16-bit decrement
subwf ARG1L,f
btfss STATUS,C
decf ARG1H,f
movf ARG1H,f ;16-bit test if zero
btfsc STATUS,Z
movf ARG1L,f
btfsc STATUS,Z
return
goto milliDelay

We are now ready to approach the main program, which begins by configuring the UART and resetting the motor
controller. The 2 millisecond pause at the end gives the motor controller some time between resetting and receiving
serial input.

org 0x05
startMain

;set up I/O ports and serial port for 19,200 baud UART
bsf STATUS,RP0
movlw b'11110111' ;smc reset is the only normal
movwf TRISB ; output--all others inputs or serial out
bcf OPTION_REG,NOT_RBPU ;enable PORTB pull-up resistors

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

4. Software for the PIC Page 7 of 10

movlw .12 ;set baud rate to 19,200 (assuming BRGH=1)
movwf SPBRG ;(address 99h)
movlw b'00100100' ;bit 6 clear - 8-bit transmission

;bit 5 set - enable transmit
;bit 4 clear - UART asynchronous mode
;bit 2 set - high baud rate mode
;bits 7, 3, 1, 0 - don't care

movwf TXSTA ;address 98h
bcf STATUS,RP0 ;select bank 0
movlw b'10010000' ;bit 7 set - enable serial port

;bit 6 clear - 8-bit reception
;bit 4 set - continuous receive
;bits 5, 3:0 - don't care

movwf RCSTA ;address 18h
;reset motor controller
bcf SMC_PORT,SRST
nop
nop
bsf SMC_PORT,SRST
movlw 0x00
movwf ARG1H
movlw 0x02
movwf ARG1L
call milliDelay

The program is now ready to run its main loop, in which it checks the bumper switches and takes the appropriate
action. Two supporting subroutines, updateMotor and pause, are shown later; updateMotor sends a 4-byte
command to the motor controller based on BYTE3 and BYTE4, and pause stops both motors for 50 ms. pause is used
to keep the motors from having to instantly switch from forward to reverse, which causes a current surge that can
exceed the motor controller’s maximum current specification of 1 A.

mainLoop
btfss BMP_PORT,LBMP
goto left_bump
btfss BMP_PORT,RBMP
goto right_bump
;no bumps, so just go straight
movlw 0x00 ;right motor, forward
movwf BYTE3
movlw 0x7F ;full speed
movwf BYTE4
call updateMotor
movlw 0x02 ;right motor, forward
movwf BYTE3
movlw 0x7F ;full speed
movwf BYTE4
call updateMotor
goto mainLoop

left_bump
call pause
movlw 0x03 ;right motor, backward
movwf BYTE3
movlw 0x7F ;full speed
movwf BYTE4
call updateMotor
movlw 0x01 ;left motor, backward
movwf BYTE3
movlw 0x3F ;half speed
movwf BYTE4
call updateMotor
movlw HIGH .1500 ;pause 1.5 seconds (1500 ms)
movwf ARG1H
movlw LOW .1500
movwf ARG1L
call milliDelay
call pause
goto mainLoop

right_bump
call pause
movlw 0x03 ;right motor, backward
movwf BYTE3

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

4. Software for the PIC Page 8 of 10

movlw 0x3F ;half speed
movwf BYTE4
call updateMotor
movlw 0x01 ;left motor, backward
movwf BYTE3
movlw 0x7F ;full speed
movwf BYTE4
call updateMotor
movlw HIGH .1500 ;pause 1.5 seconds (1500 ms)
movwf ARG1H
movlw LOW .1500
movwf ARG1L
call milliDelay
call pause
goto mainLoop

Finally, here are the subroutines called from the main loop. The updateMotor subroutine sends the motor controller
the 4-byte control sequence of 0x80 and 0x00 followed by the motor number and direction, specified in BYTE3, and
the speed, specified in BYTE4. To keep this example program simple, this subroutine does not exit until all four bytes
have been copied to the transmit buffer. The program could be made more efficient by using interrupts, allowing the
PIC to perform other tasks while the UART is busy transmitting.

updateMotor
btfss PIR1,TXIF
goto updateMotor
movlw 0x80
movwf TXREG
nop

updateMotor2
btfss PIR1,TXIF
goto updateMotor2
movlw 0x00
movwf TXREG
nop

updateMotor3
btfss PIR1,TXIF
goto updateMotor3
movf BYTE3,W
movwf TXREG
nop

updateMotor4
btfss PIR1,TXIF
goto updateMotor4
movf BYTE4,W
movwf TXREG
return

pause
movlw 0x02 ;right motor off
movwf BYTE3
movlw 0x00
movwf BYTE4
call updateMotor
movlw 0x00 ;left motor off
movwf BYTE3
movlw 0x00
movwf BYTE4
call updateMotor
movlw HIGH .50 ;pause 0.05 second (50 ms)
movwf ARG1H
movlw LOW .50
movwf ARG1L
call milliDelay
return

Note: Make sure the watchdog timer is disabled in the configuration bits. The
brown-out detection feature must also be turned off for the PIC to operate off of
the 3.6 V power source.

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

4. Software for the PIC Page 9 of 10

5. Results and Conclusion
Our robot performed as expected, and it was fairly entertaining to watch it bounce around the room. The bumper
switches are far from perfect, with a blind area in the center of the robot that can get the robot stuck behind table
legs and other obstacles too narrow to trigger either of the switches. This problem could be avoided by adding a
third, center switch, or by making the robot turn randomly every once in a while.

One serious problem we did initially encounter was with changing the direction of the motors from full speed in one
direction to full speed in the other direction. In highly cluttered areas, in which the robot frequently hit obstacles and
changed directions, the motor controller would sometimes heat up to the point where the thermal cutoff kicked in,
causing the robot to stop for approximately one second. After adding the 50 ms pauses between switching directions,
we did not have any problems with the motor controller overheating.

This project shows that building a small robot is very simple when using the Pololu motor controller. In only a few
hours, we built a functioning robot that can serve as a starting point for more complicated robots. If you are ready to
tackle a new project, you might try adding on our IR beacon [http://www.pololu.com/catalog/product/701] to allow the
robot to run away from another robot.

PIC-Based, Obstacle-Avoiding Robot © 2001–2009 Pololu Corporation

5. Results and Conclusion Page 10 of 10

http://www.pololu.com/catalog/product/701

	PIC-Based, Obstacle-Avoiding Robot
	1. Introduction
	2. Materials and Tools
	3. Hardware Construction
	4. Software for the PIC
	5. Results and Conclusion

