Dual Serial

5o Motor Controller
User's Guide

Contents:
Safety Warning
Parts List
Contacting Pololu
How to Solder
Assembly Instructions
Connecting the Motor Controller
Basics of the Serial Interface
Configuring the Motor Controller
Using the Motor Controller
Troubleshooting Tips
Example BASIC Stamp Il Program
How the Motor Controller Works
Description and Specifications

© 2004
Polols http://www.pololu.com/ SMCO] B

& Important Safety Warning

This kit is not intended for young children! Assembly of this kit
requires high-temperature soldering and the use of sharp cutting
tools. Some included components may become hot, leak, or explode
if used improperly. Pololu strongly recommends that you wear
safety glasses when building or working with any electronic
equipment. Children should use this kit only under adult supervision.
By using this product, you agree not to hold Pololu liable for any
injury or damage related to the use or to the performance of this
product. This productis not designed for, and should not be used
in, applications where the malfunction of the product could cause
injury or damage.

Parts List

The following components are the motor controller parts. Make sure to verify that all
components are included, and that you know which component is which. Each
component is labeled with its reference number and description. There are 11 parts in
the kit, including the PCB.

[

CONNECTOR PCB
Electrolytic Tantalum 8-pin female Printed Circuit
Capacitor Capacitor header Board
(2 options) (2 options)
Ul ﬁ
PIC12F629 \ U3
Microcontroller U2 LM2931
and Socket SN754410 5-volt Regulator
Dual H-Bridge
and Socket
© 2004

http://www.pololu.com/ 2

Pololu

Contacting Pololu

You can check the Pololu web site at http://www.pololu.com/ for the latest
information about the motor controller, including color pictures, application examples,
and troubleshooting tips.

We would be delighted to hear from you about your project and about your experience
with our motor controller. You can contact us through our online feedback form or by
email at support@pololu.com. Tell us what we did well, what we could improve,
what you would like to see in the future, or anything else you would like to say!

How to Solder

You need a soldering iron and diagonal cutters to assemble the motor controller. The
green printed circuit board (PCB) is the base that holds the components together and
establishes the necessary electrical connections. The PCB has two sides: a top side, or
component side, which has white
silkscreen markings, and a bottom side,
or solder side. Insert the components soldering iron

from the top side and solder them on the solder
solder side. In general, you should
insert and solder the components so that boﬁom / PCB

they are as close as possible to the PCB.
All components in this kit, except for ’rop
voltage regulator U3, should be flush 2. check

with the PCB. After soldering, trim

: solder

good

excess leads with diagonal cutters. bad
\ /
To solder, heat tlead and th ' E = '
o solder, heat a component lead and the
PCB pad and then apply solder until the ¢<D:D:”
solder flows onto both the lead and the 3: trim leads
pad. Ifthe solder beads up on the lead or A P

on the pad, the connection is bad, so you ' '

should apply more heat. However, be m

careful not to damage any components
through overheating.

© 2004

Pololu http://www.pololu.com/ 3

Assembly Options

You can assemble the motor controller in several ways, so before you begin, there are
three choices you must make. The options concern the size of the assembled motor
controller. You can insert the various components into the PCB without soldering to
help determine which options are best for you.

Should I use IC sockets for Ul and U2? The sockets are not necessary, and not using
them will make your motor controller slightly smaller. Not using them, however, will
make it much more difficult to replace the ICs if they are damaged, and also make it
possible for you to damage the devices while soldering. We strongly recommend
using the sockets.

Which C1 option should I use? Two electrolytic capacitors are provided in the kit.
The larger capacitor is rated for 25 volts, whereas the smaller one is rated for 16 volts.
These ratings limit the voltage you can apply to the motor controller and thus limit the
maximum voltage with which you can drive the motors. If you want to drive the
motor with voltages higher than 16 volts, or if you don’t care about size, use the
larger capacitor.

Which connector should I use? A straight connector and a right-angle connector are
provided in the kit. It is up to you which you choose to use; you can also solder motor
leads directly into the PCB holes and avoid using a connector altogether.

Assembly Instructions

Caution: The components U1-U3 can be damaged by static electricity. Ground
yourself (touch a water pipe or the metal frame of a piece of electrical equipment)
before handling these components, and avoid touching their leads. Once assembled,
the motor controller can be stored safely in the conductive bag in which the kit is
packaged.

Insert the 8-pin socket from the top side of the PCB in
the area indicated U1, and solder. On one side of the
socket is a notch that should be aligned with the notch
on the PCB drawing. The socket protects the PIC
microcontroller from being damaged during soldering.

Solder the 16-pin socket in the area indicated U2.
Make sure to align the notch on the socket with the
notch on the PCB drawing. The socket allows you to
replace the motor driver chip if it ever breaks.

© 2004
http://www.pololu.com/ 4

Pololu

Pololu

MCOTA— "]
+ s
<| s
I P I A ml

OO
ﬁ+ +

© 2004
http://www.pololu.com/

Next, add the tantalum capacitor C2. You may need to
bend the leads to make them straight so that they will
fit. The capacitor is polarized, which means it must
only go in one way. Make sure the side labeled with a
“+” and a stripe goes into the hole that is also marked
with a “+”. If the PCB is oriented as shown in the
diagram, the lower hole is for the positive lead.

Now, add the voltage regulator, U3. Make sure the
device is oriented as shown on the silkscreen drawing,
with the flat side facing the outside of the PCB.
Caution! The voltage regulator can be damaged by
static electricity.

In this step, add your choice of electrolytic capacitor for
C1. The larger capacitor is necessary if you want to run
your motors off of a 24-volt power source, and you
should use it if you don’t care about the size of the
completed motor controller. The electrolytic
capacitors are polarized, but this time the stripe
identifies the negative terminal. Also, the positive
lead is longer. Make sure to match up the positive lead
with the appropriate hole in the PCB.

Next, solder in your choice of connector. You can use
either the straight or the right-angle female header
provided in your kit, or use your own connector. Ifyou
prefer having leads soldered directly to the PCB, you
can do so now or wait until you have the leads ready and
available.

Finally, insert the two integrated circuits (ICs), Ul
and U2, into their sockets. Make sure that you plug
them in so that the notches on the ICs match the
notches on the PCB outline. Do not solder the ICs
to the sockets. If you soldered the sockets in
backwards, it doesn’t matter as long as the actual
component is oriented correctly. Be careful: the ICs
are static-sensitive, so take appropriate precautions
and avoid touching their leads. You may need to bend
some of the leads to make them fit in the sockets; if so,
hold the plastic body of the IC and push the pins
(gently!) against a flat surface, one row ata time.

Connecting the Motor Controller

There are eight pins on the bottom of the motor
controller for connecting it to the rest of your system.
A closeup of the bottom of the PCB is shown to the |
right, in case you have a hard time reading the
silkscreen on your board. The eight pin
labels and the corresponding functionsare | LABEL | FUNCTION

S) N | Y E

shown in the table. - ground (0V)

+ positive supply (5.6-25V)
Connecting Power. Warning: 1 reset
connecting power incorrectly can cause 2 serial control input

some components to explode. Connect M-
the ground pin to a ground terminal on M1+ | motor 1, posifive outout
your robot controller. If you have a -

separate power supply for just the motors, M2-_| motor 2, negq’nve output
make sure that you connect the negative M2+ | motor 2, positive oufput
terminal of that supply to the same ground.

(This situation may arise if, for example, you want to run your robot controller off of a
9-volt battery and you want to run your motors off of a 12-volt battery. You will also
need an independent power supply for the motors if you want to use a personal
computer as the robot controller. In that case, you might use a battery for the motor
supply and use a wall outlet for the PC supply.) Connect the ‘+’ pin to the positive
terminal of the motor supply; this terminal may connect only to the motor controller, or
it may connect to any other device powered by that supply. Warning: the supply
voltage may not exceed 16 volts or 25 volts, depending on which capacitor you
chose for C1in step 5 of assembly.

motor 1, negative output

Reset Input. Connect this pin to a digital output on your robot controller. The reset line
must be kept high (+5 V) for the motor controller to operate; bringing it low (to 0 V) for
at least 2 microseconds resets the motor controller to its initial state (all motors off,
waiting for its first serial command). You might also use a pull-down resistor on the
reset line so that if your main controller gets reset, the motors do not keep running. We
strongly recommend using the reset line, but if you do not want to use it, connect it
through a 4.7 kOhm resistor to your logic supply. After turning on the motor
controller or resetting it, allow 100 ms for it to start up before sending any serial
data.

© 2004
http://www.pololu.com/ 6

Pololu

Serial Input. Use a pin on your main controller that can be used as a logic-level,
asynchronous serial output. Serial data can be sent down this line 8 bits at a time, with
no parity bit, at any rate between 1200 and 19200 baud. Once you choose a baud rate,
you cannot change it until the motor controller is reset. Important note: unlike
RS-232 serial lines (the standard for serial ports used to connect devices to personal
computers), this line uses logic voltages between 0 and +5 V. The higher voltages used
on RS-232 lines will damage the motor controller. If you need to convert RS-232 levels
to TTL levels, you will need to use a level converter such as the MAX220 (made by
Maxim). You could also use the simple circuit shown below. When building circuits
that connect to a PC, be especially careful because you could potentially destroy
the PC’s serial port. Before attempting to connect your own electronics to a
computer, make sure you know what you are doing!

; fo &8V
DB@ serial
/
port connector ., (off C2+) o
[0y 4.7k .
o fo serial
o—% | R2 control
R 10K input (2) Bold oo o
olel circles SR i
o 4 al indicate pads O o
9 that are connected
o Ts N2222 | fo ground () 08V which you can M
- - " 9 with the circuit shown on the left

The above diagram shows a simple circuit for connecting the motor controller to a PC
serial port. You will need to connect one side of resistor R1 to a 5V supply, which is
available on the PCB at the points indicated on the figure to the right. You can solder a
wire onto one of the pads, but make sure that the wire touches only the intended pad.

© 2004
http://www.pololu.com/ 7

Pololu

Connecting the Motors in Dual Motor Mode. If you are using your motor controller
to control two independent motors, connect one or two motors to the pins labeled M1
and M2. You probably don’t need to worry too much about the polarity, but the “+’ pins
go positive when the controller receives “forward” commands. If you find out that
your motors turn in different directions than you expect, you can flip the wiring or just
switch the forward and reverse commands on your robot controller program.

— OUT1: RESET
— OUT2: SERIAL CONTROL

MOTOR
BATTERY

Upto 1 Amp

A typical two-motor setup.

The green box labeled “robot controller” represents a main control unit that
includes a battery that is not shown. This robot controller could be a
microcontroller or a device such as the BASIC Stamp from Parallax. Keep in
mind that the wiring you use for the motor outputs and power connections
should be capable of conducting several amps. We recommend using at least 26
gauge wire (remember, smaller numbers mean bigger wires!).

© 2004
http://www.pololu.com/ 8

Pololu

Connecting One Motor in Single Motor Mode. If you are using your motor controller
to control a single motor, you must use all four pins labeled M1 and M2. Before
connecting the single motor, make sure that you have configured the motor controller
for single motor mode. Connect pins M1+ and M2+ to one motor lead, and connect
pins M1- and M2- to the other motor lead. If you make these connections in dual-
motor mode, you could destroy your motor controller!

— OUT1: RESET
— OUT2: SERIAL CONTROL

MOTOR
BATTERY

Up to 2 Amps

A typical single-motor setup.

In this configuration, the two H-bridges of the motor controller are wired in
parallel. Single-motor mode must be used to ensure that the two H-bridges are
also controlled in parallel. This setup allows up to 2 A to be delivered to the
motor.

The green box labeled “robot controller” represents a main control unit that
includes a battery that is not shown. This robot controller could be a
microcontroller or a device such as the BASIC Stamp from Parallax. Keep in
mind that the wiring you use for the motor outputs and power connections
should be capable of conducting several amps. We recommend using at least26
gauge wire (remember, smaller numbers mean bigger wires!).

© 2004
http://www.pololu.com/ 9

Pololu

Basics of the Serial Interface

The motor controller uses a serial interface to communicate with a main controller,
which could be a small microprocessor or a desktop computer. To use the motor
controller, you must program your main controller to send data with the correct format
to the motor controller’s asynchronous serial input, which is the pin labeled “2°.

The motor controller expects eight bits at a time (with no parity bit) at a constant baud
rate ranging from 1200 to 19200 baud (the motor controller will automatically detect
the baud rate). The serial bits must be at logic levels and non-inverted, meaning that a
zero is sent as a low voltage, and a one is sent as a

high voltage, as shown in the diagram to the right. LsB MSB
(The PC-connection circuit on page 7 corrects the 10011010

inverted signal coming out of PC serial ports.) ov

Commands sent to the serial input must conform to

the above format or else the motor controller and / \ 7 \
. . . start bit stop bit

other devices connected to the serial line may

behave unexpectedly.

Once you can send individual bytes correctly, you must send the correct sequence of
bytes to get the motor controller to run your motors. This motor controller interface
protocol is compatible with other Pololu serial devices such as our servo controller, so
you can control multiple Pololu serial devices on a single line. The protocol requires
one start byte, a one-byte device identifier, and then any number of bytes, as required by
the device specified in the second byte:

| start byte = 0x80 | device type | data byte 1 | data byte 2 |

The start byte is identified by its most significant bit being set; all subsequent bytes
must have bit 7 clear, giving them possible values of 0 to 0x7F (0 to 127 decimal).
Whenever a byte is transmitted on the serial line, all devices on that line check to see if
the byte is the start byte; if it is, then all devices check the next byte to see if the data is
meant for them. All subsequent bytes, the data bytes in the diagram above, are only
interpreted by the appropriate devices, while all other devices wait for anew start byte.

If you did not understand all of the details above and you just want to use your motor
controller, don’t worry. You just need to use the right serial settings and send the
correct sequences of bytes, as described on the following pages.

Summary: Use non-inverted, logic-level serial transmission at baud rates
between 1200 and 19200, 8 bits at a time with no parity and one stop bit.

© 2004
http://www.pololu.com/ 10

Pololu

Configuring the Motor Controller

You can configure your motor controller to control a single motor or to control two
motors independently. You can also set which motor number a particular motor
controller will control, in case you want to control many motors off of one serial line.
During configuration, you should connect just one motor controller at a time to your
serial line unless you want to configure each motor controller the exact same way. The
default configuration is for two-motor control with motor numbers 2 and 3.

Configuration is achieved by sending a three-byte packet consisting of the start byte, a
configuration command byte, and the new configuration byte:

| start byte = 0x80 | change configuration = 0x02 | new settings, Ox00-0x7F

The new settings byte contains two parts: a six-bit bit 7 bit O
motor number and a one-bit flag specifying one- || x |X [X [X |X |X [X
motor or two-motor mode.

. . . ;—/
e Bits 0-5 specify the motor number(s) to which

the motor controller will respond. In single- L bits 0-5: motor
motor mode, the number you choose sets the number
number to which the motor controller will bit 6: # of motors
respond. In two-motor mode, the motor 1= 1 motor

. . 0 = 2 motors
controller will respond to two consecutive .

bit 7: always 0

numbers. If you set an even motor number,
the motor controller will control that motor
number and the one above it; if you set an odd motor number, the motor controller
will control that motor number and the one below it. Note that all motor
controllers will respond to motor number 0 (and 1, if in two-motor mode).

e Bit 6 specifies whether the motor controller is in one-motor mode or in two-motor
mode. Ifthisbitis clear, the motor controller will be in two-motor mode; ifthe bit is
set, the motor controller will be in 1-motor mode.

After sending the change configuration command, the motor controller will pulse pin
M1- for one-motor mode and pin M 1+ for two-motor mode <motornumber>+ 1 times.
If you want to verify that you correctly configured your motor controller to control one
motor, say motor number 3, then connect a motor or light between pin M 1- and ground
and check that you see 4 pulses after you send the command. (The reason for the extra
pulse is so that you get some response if you set the motor number to zero). After
configuration, the motor controller must be reset (either by turning it off and back
on or by using the reset line) before you can continue using it.

Examples: (Using PBASIC “SEROUT” command with serial line on pin 5)

' “84” parameter sets up 9600 baud serial communication

SEROUT 5, 84, [$80,2,2] ‘2-motor mode, controlling motors 2 and 3
SEROUT 5, 84,[128,2,68] ‘l-motor mode, controlling motor 4
SEROUT 5, 84, [$80,$2,5%44] ‘same as above, using hexadecimal

© 2004
http://www.pololu.com/ 11

Pololu

Using the Motor Controller

To set the speed and direction of a motor, send a four-byte command with the following
structure to the motor controller:

|s’ror’r byte = Ox80| device type = 0x00 |motor # and direc’rion| motor speed|

The Four-Byte Motor Controller Command

Byte 1: Start Byte. This byte should always be 0x80 (128 in decimal) to signify the
beginning of a command. The start byte is the only byte with the highest bit (bit 7) set,
and it alerts all devices on the serial line that a new command is being issued. All
succeeding bytes sent down the serial line must have their highest bit cleared to zero.

Byte 2: Device Type. This byte identifies the device type for which the command is
intended, and it should be 0x00 for commands sent to this motor controller. All devices
that are not dual motor controllers ignore all subsequent bytes until another start byte is
sent.

Byte 3: Motor Number and Direction. This byte 7 bit 0
has three parts, as shown in the diagram to the right: | 0 | X | X | X | X | X | X | X |

e Bit 0 specifies the direction of the motor. Set

this bit to 1 to make the motor go forward; clear |

the bit to make it go backward. bit O: direction

. . 1 = forward

e Bits 1-6 specify the motor number. All motor 0 = reverse

controllers respond to motor number(s) 0 (and 1, bits 1-6: motor

in dual-motor mode). number
e Bit7 mustbe cleared since this is not a start byte. bif 7: aways 0

To obtain the complete byte 3 value from a motor number and a direction, multiply the
motor number by 2 and add 1 if the direction is forward. For example, to make motor 5
go forward, byte three should be 5x2 +1=11. To make motor 1 go backward, byte 3
should be 1 x2=2. (Two efficient ways to multiply by 2 in a microcontroller program
are shifting left by one digit or adding the motor number to itself.)

Byte 4: Motor Speed. The most significant bit must be zero since this is not a start
byte. The remaining seven bits specify the motor speed. The possible range of values
for byte 4 is thus 0x00 to 0x7F (0 to 127 decimal). 0x00 turns the motor off, and 0x7F
turns the motor fully on; intermediate values correspond to intermediate speeds.
Setting a speed of 0 in forward or reverse will cause the motor controller to brake.

Examples: (Using PBASIC “SEROUT” command with serial line on pin 5)

' “84” parameter sets up 9600 baud serial communication
SEROUT 5, 84,([$80,0,5,127] ‘motor 2 full on, forward

SEROUT 5, 84, [$80,0,5,0] ‘motor 2 off, forward (braking)
SEROUT 5, 84, [$80,0,4,0] ‘motor 2 off, reverse (braking)
© 2004
http://www.pololu.com/ 12

Pololu

Resetting the Motor Controller

The motor controller’s reset line should normally be kept high at +5 V. Pull the reset
line low to 0 V for at least 2 microseconds to reset the motor controller to its initial state
(all motors off, waiting for the first serial command). You might also use a pull-down
resistor on the reset line so that if your main controller gets reset, the motors do not keep
running. We strongly recommend using the reset line, but if you do not want to use it,
connect it through a 4.7 kOhm resistor to your logic supply. After turning on the
motor controller or resetting it, allow 100 ms for it to start up before sending any
serial data.

Controlling Multiple Motor Controllers with One Serial Line

To control a particular motor, you must specify its motor number in command byte 3.
Regardless of configuration, every motor controller responds to commands for motor
number 0, and, in two-motor mode, to motor 1. To control more than two motors with a
single serial line, you need to use motor numbers 2 through 63. Configure each motor
controller to respond to different motor numbers, then connect them to the same serial
line; each motor controller will respond only to the motor number to which it is
configured.

For example, to control six motors independently with dual-motor mode, you need
three motor controller boards, each with different motor numbers. All three motor
controllers respond to commands for motor numbers 0 and 1. For controlling the six
motors independently, use motor numbers 2, 3, 4, 5, 6, and 7. (In single-motor mode,
you would need six motor controllers configured to numbers 1 through 6 since only
motor number 0 is a universal motor number.)

Troubleshooting Tips

If your motor controller does not work at first, it can be difficult to determine the cause
because a broken unit could look just like a working one! Nevertheless, patience and
meticulous attention to detail, along with these few tips, should usually help you
through:

Check all of your solder joints. A good solder joint should look shiny, and you should have no
shorts. If you have a multimeter, check that you have all of the connections as shown on the
schematic on page 15.

Double check all of your connections. Are your logic and motor supply grounds connected? If
you are using a breadboard or sockets, are the motor controller pins all making good contact?
Double check your code. Are your baud rate settings correct? If you cannot get your design
working with the top baud rate of 19200, try lowering it to 9600, where slight timing mismatches
are less likely to frustrate your efforts.

Are you using the correct motor number? If nothing seems to be working, start by using
motor number 0, which should work regardless of the configuration.

Are you using good power supplies? Make sure your power supply can supply enough current
for your motors. Do notuse regulated power for your motor supply.

If your motors run and then unexpectedly stop, your motor driver chip might be overheating.
You can help the situation by putting a heat sink on the motor driver chip, lowering your motor
supply voltage, and putting short stops between changes in motor direction.

© 2004
http://www.pololu.com/ 13

Pololu

Example BASIC Stamp II Program

This program, which can run on a BASIC Stamp II controller, makes motor 1
gradually speed up, then slow down, then speed up in the other direction, and then slow
down again. For the code to work, pin 15 must be connected to the reset input (1), and
pin 14 must be connected to the serial input (2). The interface code should look similar
in other programming languages; the description below should help you in
understanding the code and, if necessary, in translating it to other languages.

On line 1, the 8-bit variable speed is declared for later use. The serial line is then taken
high, to its idle state, before the motor controller is reset by a low-going pulse on pin 15
(lines 3 and 4). A 100-ms pause on line 5 ensures that the motor controller is up and
running before any serial data is sentto it.

The first for loop on lines 6-9 causes motor 1 to gradually speed up. The serial output is
created by the serout statement on line 7. The first parameter, 14, specifies the pin
number through which to send the serial signal. The next parameter, 84, sets up the
serial characteristics to be 8 bits with no parity, non-inverted, at a baud rate of 9600.
The four numbers in square brackets are the data to be sent, and they correspond to the
four control bytes for the motor controller. The first two bytes should always be $80
and 0. The second 0 makes motor 1 go backward. The speed variable, which increases
every time through the loop, is the only part of the command that changes, and that is
what makes the motor gradually speed up. The pause statement on line § causes the
program to wait for 20 ms (0.02 seconds) before sending the next command.

When the first loop ends, the motor is set to its full speed of 127. The second loop on
lines 10-13 slows the motor back down by sending speeds from 127 down to 0. The
next two loops on lines14-21 then repeat the process, except for the parameter value of
1 in byte three, which causes motor 1 to spin forward.

1 speed var byte
2 high 14 ‘take serial line high
3 low 15 ‘reset motor controller
4 high 15
5 pause 100 ‘motor controller startup time
6 for speed =0 to 127
7 serout 14,84, [$80, 0, 0,speed]
8 pause 20
9 next
10 for speed =127 to 0
11 serout 14,84, [$80, 0, 0,speed]
12 pause 20
13 next
14 for speed =0 to 127
15 serout 14,84, [$80, 0, 1,speed]
16 pause 20
17 next
18 for speed =127 to 0
19 serout 14,84, 1[$80, 0, 1,speed]
20 pause 20
21 next
© 2004
http://www.pololu.com/ 14

Pololu

How the Motor Controller Works

The motor controller uses H-bridges to turn motors forward and backward (see the
dotted ‘H’ in the left figure). H-bridges have four switches, which are turned on in pairs
to allow current to flow into the motors in both directions, as shown below. In the left
figure, all four switches are open, and the motor is turned off. When switches 1 and 4
close, the motor turns in one direction; when switches 2 and 3 close, the motor turns the
other way. Integrated circuit U2 contains two H-bridges, allowing bidirectional
control of two motors.

V+

A technique called pulse width modulation (PWM) is used to control the speed of the
motors. The microcontroller (U1) is a little computer that controls the H-bridge
switches. It turns the switches on and off very rapidly (600 times per second) and
varies the percentage of the time that the switches are on to achieve the speed set by the
serial interface. For ahigher speed, the switches are on a larger fraction of the time than
for a slower speed. At the maximum speed of 127, the switches are left on. The
momentum of the motor shaft keeps the shaft spinning at a constant speed that can be
varied smoothly over all 127 different speeds.

U3 and the capacitors provide a steady 5V power supply for the microcontroller, which
cannot run at the full motor voltage provided to the board at the ‘+’and ‘-’ pins.

The complete schematic diagram of the motor controller is shown below:

U3 LM2931
¢ VIN VOUT
GND U1 PIC12F629 U2 SN754410
-0 2l vss GP1 [—2 1A vee (6
+ |01 7 VCC GP2 : o 2A 1,2EN 5
1|0 3 MCLR GP5 7 5 3A 3,4EN)
2|0 GP4 GPO 7 4A VMOT s
+ + 5| SND E ol "M
— C1 — 2 T GND 1Y v O| +
/T\ 100 /I\ 29 5| GND A Ol = \12
® ® GND 3Y O| +
© 2004
http://www.pololu.com/ 15

Pololu

The Pololu Dual Serial Motor Controller

For a robot to interact with its environment, it must be able to convert
electrical signals into motion. However, the power requirements of
actuators, electrical devices capable of producing motion, are typically
so high that normal digital circuitry cannot drive them. In addition,
precise motion control requires constantly changing the signals sent to
the actuators, leaving the control circuitry with little time to attend to
other tasks.

The Pololu motor controller bridges the gap between robot controllers
and power-hungry actuators. Using one serial output from your robot
controller, you can independently set each of two small DC motors (the
kind typically found in remote-control cars and motorized toys) to go
forward or backward at any of 127 different speeds. To control
additional motors, you can connect multiple motor controllers to the
same serial line. The motor controller is compatible with the Pololu
Servo Controller, so you can control an almost unlimited number of
motors and servos with one serial line. Because of its small size, the
motor controller can fitalmost any robot design

Specifications

PCB SiZ€...ccovveiveeiieiieeieee 1.00"x0.85"

Motor ports.......ceeeevveeeeseveeenne 2

Speeds......ooeviiiiniiiiiieeee 127 forward, 127 backward, and brake

Maximum current................... two motors 1 A each, one motor2 A

Supply voltage..........cceennee..n. 5.6-25V

Datavoltage.........cc.cccveeveennene Oand5V

PWM frequency...................... two motors 600 Hz, one motor 750 Hz

Serial baud rate....................... 1200-19200 (automatically detected)
© 2004

http://www.pololu.com/ 16

Pololu

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

