
Application Note
SMBus communication with MLX90614

390119061402 Page 1 of 32 Jan-2008
Rev 004

1 Scope
This document introduces the users in SMBus communication protocol and especially how it can
be used to communicate with MLX90614 infrared thermometers. The MLX90614 is an Infra Red
thermometer for non contact temperature measurements. Both the IR sensitive thermopile
detector chip and the signal conditioning ASSP are integrated in the same TO-39 can. Thanks to
its low noise amplifier, 17-bit ADC and powerful DSP unit, a high accuracy and resolution of the
thermometer is achieved. The thermometer comes factory calibrated with a digital PWM and
SMBus output. As a standard, the 10-bit PWM is configured to continuously transmit the
measured temperature in range of -20 to 120 °C, with an output resolution of 0.14 °C and the
POR default is SMBus.
The original purpose of the SMBus was to define the communication link between an intelligent
battery, charger for the battery and a microcontroller that communicates with the rest of the
system. However, SMBus can also be used to connect a wide variety of devices including
power-related devices, system sensors, inventory EEPROMs communications devices and
more. The original specification of the SMBus protocol can be found on http://www.smbus.org/specs/

2 Related Melexis Products
EVB90614 is the evaluation board which supports the MLX90614 devices.

3 Table of contents
1 Scope ..1
2 Related Melexis Products ...1
3 Table of contents ..1
4 General SMBus protocol discription ..2

4.1 Definitions of terms ...2
4.2 SMBus overview..2
4.3 Electrical characteristics of SMBus devices ..5
4.4 Timeouts ..6
4.5 Slave device timeout definitions and conditions..6
4.6 Master device timeout definitions and conditions..7
4.7 Low-power DC specifications ...7
4.8 High-power DC specifications...7
4.9 Bit transfer ...8

5 Comparing the I2C Bus to the SMBus ...10
5.1 Timeout and Clock Speed differences ...10
5.2 DC specifications differences ..10
5.3 Other differences..11

6 SMBus comunication with MLX90614..12
6.1 Overview..12
6.2 Timings ..12
6.3 Detailed Communication description...13

7 Sleep Mode ...25
8 Electrical considerations of SMBus applications with MLX90614..26
9 Conclusion ..28
♦ APPENDIX – SMBus exemplary functions for PIC18 using microchip MCC18 compiler29

Application Note
SMBus communication with MLX90614

390119061402 Page 2 of 32 Jan-2008
Rev 004

4 General SMBus protocol discription

4.1 Definitions of terms

ACK - Acknowledgement from receiver
Address Resolution Protocol - A protocol by which SMBus devices with assignable addresses
on the bus are enumerated and assigned non-conflicting slave addresses.
ASSP - Application Specific Standard Product
Bus Master - Any device that initiates SMBus transactions and drives the clock.
Bus Slave - Target of a SMBus transaction which is driven by some master.
LSb - The Last Significant bit
Master-receiver - A bus master in a SMBus transaction while it is receiving data from a bus
slave during a SMBus transaction.
Master-transmitter - A bus master in a SMBus transaction while it is transmitting data onto the
bus during a SMBus transaction.
MSb - The Most Significant bit
NACK - Not Acknowledgement from receiver
OD - Open Drain
PEC - Packet Error Code
PP - Push Pull
Repeated Start - A repeated START is a START condition on the SMBus used to switch from
write mode to read mode in a combined format protocol (e.g. Byte Read). The repeated START
always follows an Acknowledge, and it always indicates that an address phase is beginning.
Slave-receiver - A Slave-receiver is a device that acts as a bus slave in a SMBus transaction
while it is receiving address, command or other data from a device acting as a bus master in the
transaction.
Slave-transmitter - A Slave-transmitter is a device acting as a bus slave in a SMBus
transaction while it is transmitting data on the bus in response to a bus master’s request.

4.2 SMBus overview

Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL). Each
device connected to the bus is software addressable by a unique address and a simple
master/slave relationships exist at all times. Masters can operate as master-transmitters or as
master-receivers. It’s a true multi-master bus including collision detection and arbitration to
prevent data corruption if two or more masters simultaneously initiate data transfer. Serial, 8-bit
oriented, bi-directional data transfers can be made at up to 100 kbit/s. The System Management
Bus (SMBus) is a two-wire interface through which various system component chips can
communicate with each other and with the rest of the system. It is based on the principles of
operation of I2C protocol. Multiple devices, both bus masters and bus slaves, may be connected
to a SMBus segment. Generally, a bus master device initiates a bus transfer between it and a
single bus slave and provides the clock signals. The one exception to this rule is during initial
bus setup when a single master may initiate transactions with multiple slaves simultaneously. A
bus slave device can receive data provided by the master or it can provide data to the master.
Only one device may master the bus at any time. Since more than one device may attempt to
take control of the bus as a master, the SMBus protocol provides an arbitration mechanism that
relies on the wired-AND connection of all SMBus device interfaces to the SMBus.

Application Note
SMBus communication with MLX90614

390119061402 Page 3 of 32 Jan-2008
Rev 004

Devices may be powered by the bus VDD or by another power source Vbus (Fig.1).

Fig.1: SMBus Topology

VDD may be 3 to 5 volts +/- 10% and there may be SMBus devices powered directly by the bus
VDD. Both SDA and SCL lines are bi-directional, connected to a positive supply voltage through
a pull-up resistor or a current source or other similar circuit. When the bus is free, both lines are
high. The output stages of the devices connected to the bus must have an open drain or open
collector in order to perform the wired-AND function. SMBus standard recommends for both the
input and output stages of SMBus devices, not to load the bus when their power plane is turned
off, i.e. powered-down devices should provide no leakage path to ground. A device that wants to
place a ‘zero’ on the bus must drive the bus line to the defined logic low voltage level. In order to
place a logic ‘one’ on the bus the device should release the bus line letting it be pulled high by
the bus pull-up circuitry. The bus lines may be pulled high by a pull-up resistor or by a current
source. In case this involves a higher bus capacitance, a more sophisticated circuit may be used
that can limit the pull-down sink current while also providing enough current during the low-to-
high transition to maintain the rise time specifications of the SMBus.
In SMBus systems with higher bus capacitance (like wires) RPU=1.5kΩ (VDD=5V,IPULLUP=3.3mA)
is suitable otherwise RPU=22kΩ(VDD=5V,IPULLUP=227µA) can be used to meet SMBus low power
DC specification (see low and high power DC specification below).

Version 1.1 of the SMBus specification introduced a Packet Error Checking mechanism to
improve reliability and communication robustness. Implementation of Packet Error Checking by
SMBus devices is optional for SMBus devices. Packet Error Checking, whenever applicable, is
implemented by appending a Packet Error Code (PEC) at the end of each message transfer.
The PEC uses an 8-bit cyclic redundancy check (CRC-8) of each read or write bus transaction
to calculate a Packet Error Code (PEC). The PEC may be calculated in any way that conforms
to a CRC-8 represented by the polynomial, C(x) = x8 + x2 + x1 + 1 and must be calculated in
the order of the bits as received. The PEC calculation includes all bytes in the transmission,
including address, command and data. The PEC calculation does not include ACK, NACK,
START, STOP nor Repeated START bits. This means that the PEC is computed over the entire
message from the first START condition.

For the CRC calculation we use the following procedure:
In the case of the SMBus, the polynomial used is
X8 + X2 + X + 1. The width of this polynomial is 8 (the highest power of X indicates the width)
and it can be represented as 1 0000 0111. Since the width of the polynomial is 8 we refer to
our CRC method as CRC-8.
A message is represented as a bit-stream augmented with M = 8 zeroes at the end.
The augmented bit-stream message is devised by the polynomial 1 0000 0111. The remainder
will be the CRC-8 check byte.

Application Note
SMBus communication with MLX90614

390119061402 Page 4 of 32 Jan-2008
Rev 004

Fig.2 shows a CRC calculation example.

Fig.2

For more information about calculation of CRC refer to the next document:
http://www.sbs-forum.org/marcom/dc2/20_crc-8_firmware_implementations.pdf

Fig.3 shows the common structure of an SMBus transaction

Fig.3: SMBus Transaction

Application Note
SMBus communication with MLX90614

390119061402 Page 5 of 32 Jan-2008
Rev 004

4.3 Electrical characteristics of SMBus devices

The diagram bellow illustrates the various SMBus timings

Fig.4: SMBus timing measurements

The table below describes all timings.
Table 1

Symbol Parameter Min Max Units Comments

fSMB SMBus Operation frequency 10 100 kHz See note 1

tBUF Bus free time between Stop and

Start condition

4.7 - µs

tHD:STA Hold time after(Repeated)Start

Condition.After this period, the first clock is generated

4.0 - µs

tSU:STA Repeated Start Condition setup time 4.7 - µs

tSU:STO Stop Condition setup time 4.0 - µs

tHD:DAT Data hold time 300 - ns See note 7

tSU:DAT Data setup time 250 - ns

tTIMEOUT Detect clock low timeout 25 35 ms See note 2

tLOW Clock low period 4.7 - µs

tHIGH Clock high period 4.0 50 µs See note 3

tLOW:SEXT Cumulative clock low extend time

(slave device)

- 25 ms See note 4

tLOW:MEXT Cumulative clock low extend time

(master device)

- 10 ms See note 5

tF Clock/Data Fall time - 300 ns See note 6

tR Clock/Data Rise Time - 1000 ns See note 6

T POR Time in which a device must be

Operational after power-on reset

- 500 ms

Note 1: A master shall not drive the clock at a frequency below the minimum fSMB. Further, the operating clock

frequency shall not be reduced below the minimum value of fSMB due to periodic clock extending by slave devices .

This limit does not apply to the bus idle condition, and this limit is independent from the tLOW: SEXT and tLOW: MEXT

limits. For example, if the SCL is high for tHIGH,MAX, the clock must not be periodically stretched longer than

1/fSMB,MIN – fHIGH,MAX. This requirement does not pertain to a device that extends the SCL low for data processing of a

received byte, data buffering and so forth for longer than 100us in a nonperiodic way.

Note 2: Devices participating in a transfer can abort the transfer in progress and release the bus when any single

clock low interval exceeds the value of tTIMEOUT,MIN. After the master in a transaction detects this condition, it must

generate a stop condition within or after the current data byte in the transfer process. Devices that have detected this

condition must reset their communication and be able to receive a new START condition no later than tTIMEOUT,MAX.

Typical device examples include the host controller, and embedded controller and most devices that can master the

SMBus. Some simple devices do not contain a clock low drive circuit; this simple kind of device typically may reset

its communications port after a start or a stop condition.A timeout condition can only be ensured if the device that is

forcing the timeout holds the SCL low for tTIMEOUT,MAX or longer.

Application Note
SMBus communication with MLX90614

390119061402 Page 6 of 32 Jan-2008
Rev 004

Note 3: tHIGH,MAX provides a simple guaranteed method for masters to detect bus idle conditions. A master can

assume that the bus is free if it detects that the clock and data signals have been high for greater than tHIGH,MAX.

Note 4: tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in one message

from the initial START to the STOP. It is possible that, another slave device or the master will also extend the clock

causing the combined clock low extend time to be greater than tLOW:SEXT. Therefore, this parameter is measured with

the slave device as the sole target of a full-speed master.

Note 5: tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a

message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or

another master will also extend the clock causing the combined clock low time to be greater than tLOW:MEXT on a

given byte. Therefore, this parameter is measured with a full speed slave device as the sole target of the master.

Note 6: Rise and fall time is defined as follows:

tR = (VIL,MAX - 0.15) to (VIH,MIN + 0.15)

tF = (VIH,MIN + 0.15)to (VIL,MAX - 0.15)

Note 7: For the first silicon revision of a MLX90614 module this value is above 500ns

4.4 Timeouts

Timeout measurement intervals illustrates the definition of the timeout intervals, tLOW:SEXT
and tLOW:MEXT.

Fig.5: Timeout measurement intervals

4.5 Slave device timeout definitions and conditions

The tTIMEOUT,MIN parameter allows a master or slave to conclude that a defective device is holding
the clock low indefinitely or a master is intentionally trying to drive devices off the bus. It is highly
recommended that a slave device release the bus (stop driving the bus and let SCL and SDA
float high) when it detects any single clock held low longer than tTIMEOUT,MIN. Devices that have
detected this condition must reset their communication and be able to receive a new START
condition in no later than tTIMEOUT,MAX. Slave devices that violate tLOW:SEXT are not conformant with
this specification. A Master is allowed to abort the transaction in progress to any slave that
violates the tLOW:SEXT or tTIMEOUT,MIN specifications.

Application Note
SMBus communication with MLX90614

390119061402 Page 7 of 32 Jan-2008
Rev 004

4.6 Master device timeout definitions and conditions

tLOW: MEXT is defined as the cumulative time a master device is allowed to extend its clock cycles
within one byte in a message as measured from:
START to ACK
ACK to ACK
ACK to STOP
A system host may not violate tLOW:MEXT except when caused by the combination of its clock
extension with the clock extension from a slave device or another master. A Master is allowed to
abort the transaction in progress to any slave that violates the tLOW:SEXT or tTIMEOUT,MIN

specifications. This can be accomplished by the Master issuing a STOP condition at the

conclusion of the byte transfer in progress.

Note: A Master should take care when evaluating tLOW:SEXT violation during arbitration since the clock may be held

low by multiple slave devices simultaneously. The arbitration interval may be extended for several bytes in the case

of devices that respond to commands to the SMBus ARP address. If timeouts are handled at the driver level, the

software may need to allow timeouts to be configured or disabled by applications that use the driver in order to

support older devices that do not fully meet the SMBus timeout specifications. Devices that implement ‘shared’ slave

addresses may also violate this specification due to combined clock stretching by the different devices sharing the

address. TTIMEOUT,MIN, however, does not increase due to combined clock stretching. Therefore, this is a safer timeout

parameter for a Master to use when it knows it’s accessing SMBus 2.0 devices.

4.7 Low-power DC specifications

In the table bellow are given low power DC parameters of the SMBus specification.

Table 2
Symbol Parameter Min Max Units Comments

VIL Data, Clock Input Low Voltage - 0.8 V

VIH Data, Clock Input High Voltage 2.1 VDD V

VOL Data, Clock Output Low Voltage - 0.4 V

ILEAK Input Leakage - ±5 µA Note 1

IPULLUP Current trough pull-up resistor or

current source

100 350 µA Note 2

VDD Nominal bus voltage 2.7 5.5 V 3V to 5V ±10%

Note 1: Devices must meet this specification whether powered or unpowered. However, a

microcontroller acting as an SMBus host may exceed ILEAK by no more than 10 µA.

Note 2: The IPULLUP,MAX specification is determined primarily by the need to accommodate a

maximum of 1.1K equivalent series resistor of removable SMBus devices, such as the Smart

Battery, while maintaining the VOL,MAX of the bus.

Because of the relatively low pull-up current, the system designer must ensure that the loading
on the bus remains within acceptable limits. Additionally, to prevent bus loading, any devices
that remain connected to the active bus while unpowered (that is, their Vcc lowered to zero),
must also meet the leakage current specification.

4.8 High-power DC specifications

High-power SMBus is specified below. These higher power specifications provide the
robustness necessary, for example, to allow SMBus to cross the PCI connector, thus allowing
SMBus devices on PCI add-in cards to communicate with other devices on both the system
board and other PCI add-in cards in the same system. These higher power electrical

Application Note
SMBus communication with MLX90614

390119061402 Page 8 of 32 Jan-2008
Rev 004

specifications are an alternative to the lower power specifications stated above and may be
used in environments where necessary.

Table 3

Symbol Parameter Min Max Units Comments
VIL SMBus signal Input low voltage - 0.8 V

VIH SMBus signal Input high voltage 2.1 VDD V
VOL SMBus signal Output low voltage - 0.4 V @ IPULLUP
ILEAK-BUS Input Leakage per bus segment ±200 µA

ILEAK-PIN Input Leakage per device pin ±10 µA
VDD Nominal bus voltage 2.7 5.5 V 3V to 5V ±10%

IPULLUP Current sinking, VOL=0.4V 4 mA
CBUS Capacitive load per bus segment 400 pF Note 1
CI Capacitance for SDA or SCL pin 10 pF Note 2
VNOISE Signal noise immunity from

10MHz to 100MHz
300 - mVp-p This AC item applies

To the high-power DC
Specification only

Note 1: Capacitive load for each bus line includes all pin, wire and connector capacitances. The maximum

capacitive load affects the selection of the RPU pull-up resistor or the current source in order to meet the rise time

specifications of SMBus.

Note 2: Pin capacitance (CI) is defined as the total capacitive load of one SMBus device as seen in a typical

manufacturer's data sheet.

While SMBus devices used in low-power segments have practically no minimum current sinking
requirements due to the low pull-up current specified for low-power segments, devices in high-
power segments are required to sink a minimum current of 4 mA while maintaining the VOL,MAX of
0.4 Volts. The requirement for 4 mA sink current determines the minimum value of the pull-up
resistor RPU that can be used in SMBus systems.
Unpowered devices connected to either a low-power or high-power SMBus segment must
provide, either within the device or through the interface circuitry, protection against “back
powering” the SMBus.

4.9 Bit transfer

In accordance to the SMBus specification, the MSb is transferred first. SMBus uses fixed voltage
levels to define the logic “ZERO” and logic “ONE” on the bus respectively. The data on SDA
must be stable during the “HIGH” period of the clock. Data can change state only when SCL is
low. Each transfer begins with START bit and finishes with STOP bit (Fig.6).

Fig.6: SMBus byte format

START bit is defined by HIGH to LOW transition of the SDA line while SCL is HIGH. STOP bit is
defined by LOW to HIGH transition of the SDA line while SCL is HIGH. Every byte consists of 8
bits. Each byte transferred on the bus must be followed by an acknowledge bit. The
acknowledge-related clock pulse is generated by the master (ACK clock). The transmitter,
master or slave, releases the SDA line (HIGH) during the acknowledge clock cycle. In order to

Application Note
SMBus communication with MLX90614

390119061402 Page 9 of 32 Jan-2008
Rev 004

acknowledge a byte, the receiver must pull the SDA line LOW during the HIGH period of the
clock pulse according to the SMBus timing specifications. A receiver that wishes to NACK a byte
must let the SDA line remain HIGH during the acknowledge clock pulse. A SMBus device must
always acknowledge (ACK) its own address.

A SMBus slave device may decide to NACK a byte other than the address byte in the following
situations:

The slave device is busy performing a real time task, or data requested are not available.
The master upon detection of the NACK condition must generate a STOP condition to abort the
transfer. Note that as an alternative, the slave device can extend the clock LOW period within
the limits of the specifications in order to complete its tasks and continue the transfer.

The slave device detects an invalid command or invalid data. In this case the slave
device must NACK the received byte. The master upon detection of this condition must generate
a STOP condition and retry the transaction.

If a master-receiver is involved in the transaction it must signal the end of data to the
slave-transmitter by generating an NACK on the last byte that was clocked out by the slave. The
slave-transmitter must release the data line to allow the master to generate a STOP condition.

Application Note
SMBus communication with MLX90614

390119061402 Page 10 of 32 Jan-2008
Rev 004

5 Comparing the I2C Bus to the SMBus

The I2C bus and the SMBus are popular 2-wire buses that are essentially compatible with each
other. Normally devices, both masters and slaves, are freely interchangeable between both
buses. Both buses feature addressable slaves (although specific address allocations can vary
between the two). The buses operate at the same speed, up to 100kHz, but the I2C bus has
both 400kHz and 2MHz versions. Complete compatibility between both buses is ensured only
below 100kHz. Here are explored the significant differences between I2C and SMB.

5.1 Timeout and Clock Speed differences

Timeout and (as a consequence of timeout) minimum clock speed are the most important
differences between the I2C bus and the SMBus.
I2C Bus = DC (no timeout)
SMBus = 10kHz (35mS timeout)
Timeout is where a slave device resets its interface whenever SCL goes low for longer than the
timeout, typically 35mSec. Use of a timeout also dictates a minimum speed for the clock,
because it can never go static. Thus, the SMBus has a minimum-clock-speed specification. By
comparison, the I2C bus can go static indefinitely. In the I2C bus, either a master or a slave can
hold the clock low as long as necessary to process data. In the I2C bus, if the slave locks up
and holds either SCL or SDA low, error recovery is impossible. Very few slave devices actually
have the ability to hold SCL. As a result, the most common bus error is slave devices that have
ended up in a state where SDA is low. In the I2C bus, a master accomplishes error recovery by
clocking SCL until SDA is high and then issuing a Start followed by a Stop.
In contrast to the I2C bus, SMBus slaves are expected to reset their interface whenever SCL is
low for longer than the timeout specified in the SMBus specification of 35mS.
SMBus specifies tLOW: SEXT as the cumulative clock low extend time for a slave device. I2C does
not have a similar specification. SMBus specifies tLOW: MEXT as the cumulative clock low extend
time for a master device. Again I2C does not have a similar specification.

5.2 DC specifications differences

Both I2C and SMBus are capable of operating with mixed devices that have either fixed input
levels (such as Smart Batteries) or input levels related to VDD. When mixing devices, the I2C
specification defines the VDD to be 5.0 Volt +/- 10% and the fixed input levels to be 1.5 and 3.0
Volts. Instead of relating the bus input levels to VDD, SMBus defines them to be fixed at 0.8 and
2.1 Volts. This SMBus specification allows for bus implementations with VDD ranging from 3 to
5 Volts +/- 10%.
I2C specifies the maximum leakage current to be 10 µA while SMBus version 1.0 specified
maximum leakage current of 1 uA. Version 1.1 of the SMBus specification relaxes the leakage
requirements to 5 µA, in order to reduce the cost of testing of SMBus devices.
While I2C defines maximum bus capacitance 400pF SMBus does not specify a maximum bus
capacitance. Instead it specifies the IPULLUP maximum of 350µA in Low-power DC specification
and minimum 4mA in High-power DC specification. Bus capacitance can be calculated taking
into consideration the maximum rise time and IPULLUP.

In the table below are given a summery of level specifications for the I2C Bus and the SMBus.

Table 4
High I2C VDD Dependent

0.7*VDD

 I2C Fixed 3.0V
 SMBus 2.1V

Application Note
SMBus communication with MLX90614

390119061402 Page 11 of 32 Jan-2008
Rev 004

Low I2C VDD Dependent

0.3*VDD

 I2C Fixed 1.5V
 SMBus 0.8V

5.3 Other differences

ACK and NACK usage:
The differences in the use of the NACK bus signaling follow:
In I2C, a slave receiver is allowed not to acknowledge the slave address, if for example is
unable to receive because it’s performing some real time task. SMBus requires devices to
acknowledge their own address always, as a mechanism to detect a removable device’s
presence on the bus (battery, docking station, etc.).
I2C specifies that a slave device, although it may acknowledge its own address, some time later
in the transfer it may decide that it cannot receive any more data bytes. The I2C specifies, that
the device may indicate this by generating the not acknowledge on the first byte to follow.
Besides to indicate a slave device busy condition, SMBus is using the NACK mechanism also to
indicate the reception of an invalid command or data. Since such a condition may occur on the
last byte of the transfer, it is required that SMBus devices have the ability to generate the not
acknowledge after the transfer of each byte and before the completion of the transaction. This is
important because SMBus does not provide any other resend signaling.

More information about the differences between I2C and SMBus can be found on:
http://www.maxim-ic.com/appnotes_frame.cfm/appnote_number/476
http://www.smbus.org/specs/

Application Note
SMBus communication with MLX90614

390119061402 Page 12 of 32 Jan-2008
Rev 004

6 SMBus comunication with MLX90614

6.1 Overview

The MLX90614 can only be used as a slave device. Generally, the master initiates the start of
data transfer by selecting a slave through the Slave Address (SA). The MLX90614 meets all the
timing specifications of the SMBus (refer to Electrical characteristics of SMBus devices above).
MLX90614 has 32x17 RAM. It is not possible to write into the RAM memory. It can only be read
and only a limited number of RAM registers are of interest to the customer (see Table 6 below).
(RAM readings format is described in more details below as well as in the MLX90614 data
sheet.) 32x16 EEPROM is available for keeping the calibration data, chip configuration and chip
ID. Entire EEPROM can be read via the SMBus compatible interface. Some EEPROM locations
are write protected (access is possible with entry to Calibration mode). Before writing to
EEPROM an erase has to take place. Erase is simply writing zero into EEPROM. Erase
operations have the same access constrains as the write operations. Note that changes in
EEPROM will result in reconfiguration of the ASIC after POR (also includes enter and exit Sleep
mode). For example, Slave Address can be changed in EEPROM, but the ASIC will respond to
the old SA until POR is exited.
If MLX90614 is configured in PWM output mode, a SMBus request condition is needed. SMBus
request overrides the OD/PP bit that configures the SDA/PWM pin into Open Drain NMOS or
Push-Pull CMOS. For example, MLX90614 configured for PP PWM will switch to OD SMBus
upon SMBus request condition. The diagram below illustrates the way of switching to SMBus if
PWM is enabled. PWM output can be the POR default if configured in EEPROM.

Fig.7 SMBus request

The MLX90614’s SMBus request condition requires forcing LOW the SCL pad for period longer
than the request time tREQ (see Table 5 below). The Data line value is ignored in this case. Once
disabled PWM, it can be only enabled by switching Off-On of the supply or exit from Sleep
Mode.

6.2 Timings

The specific timings in MLX90614’s SMBus are: SMBus Request (tREQ) is the time that the SCL
should be forced low in order to switch the MLX90614 from PWM mode to SMBus mode; Tsuac
(SD) is the time after the eighth falling edge of SCL that MLX90614 will force PWM/SDA low to
acknowledge the last received byte. Thdac (SD) is the time after the ninth falling edge of SCL
that MLX90614 will release the PWM/SDA so the MD could continue with the communication.
Tsuac (MD) is the time after the eighth falling edge of SCL that MLX90614 will release
PWM/SDA so that the MD could acknowledge the last received byte. Thdac (MD) is the time
after the ninth falling edge of SCL that MLX90614 will take control over the PWM/SDA so the it
could continue with the next byte to transmit. (The indexes MD and SD for the latest timings are

Application Note
SMBus communication with MLX90614

390119061402 Page 13 of 32 Jan-2008
Rev 004

used – MD when the master device is making acknowledge; SD when the slave device is
making acknowledge). For other timings see Electrical characteristics of SMBus devices above.

Fig.8:MLX90614 specific timings

In Table 5 are given the values of the specific timings.

Table 5
Symbol Parameter Min Max Units Comments
tREQ SMBus Request 2 ms
tsuac (MD) 0.5 1 µs
tsuac(SD) 1.5 2 µs
thdac(MD) 1.5 2 µs

thdac(SD) 0.5 1 µs

6.3 Detailed Communication description

Table 6 describes commands needed for communication with MLX90614.

Table 6

Command Description

000x xxxx* RAM Access

001x xxxx* EEPROM Access

1111 0000** Read Flags

1111 1111 Enter SLEEP mode
Note *: The xxxxx is the address of the cell that has to be accessed. Read/Write is selected via the Read/Write bit

(refer to Fig. 3).

Note**: Behaves like read command. The MLX90614 returns PEC after 16 bits data of which only 4 are meaningful

and if the MD wants it, it can stop the communication after the first byte. The difference between read and read flags

is that the latter does not have a repeated start bit.

Application Note
SMBus communication with MLX90614

390119061402 Page 14 of 32 Jan-2008
Rev 004

Table 7 describes most important RAM registers. For other registers in RAM and EEPROM
memory refer to MLX90614 datasheet.

Table 7

Name Address (hexadecimal)

Ambient sensor data 0x03

IR sensor 1 data 0x04

IR sensor 2 data 0x05

Linearized ambient temperature TA 0x06

Linearized object temperature Tobj1 0x07

Linearized object temperature Tobj2 0x08

All bytes are sent and received with MSb first.

The format of SMBus reading from RAM is:

RAM memory is read only via SMBus. The reading data are divided by two, due to a sign bit
(Sn) in RAM (for example, TOBJ1 - RAM address 0x07h will sweep between 0x27ADh to
0x7FFF as the object temperature rises from -70.01°C to +382.19°C). The MSb read from RAM
is an error flag (active high) for the linearized temperatures (TOBJ1, TOBJ2 and Ta). The MSb for
the raw data (e.g. IR sensor1 data) is a sign bit (sign and magnitude format).

Pseudo code example: Reading RAM address 0x07 (Tobj1)

1. Send START bit
2. Send Slave Address (0x00* for example) + Rd\-Wr bit**
3. Send Command (0b000x_xxxx + 0b0000_0111 -> 0b0000_0111)
4. Send Repeated START_bit
5. Send Slave Address + Rd\-Wr bit**
6. Read Data Byte Low (master must send ACK bit)
7. Read Data Byte High (master must send ACK bit)
8. Read PEC (master can send ACK or NACK)
9. Send STOP bit

Note* : Any MLX90614 will respond to address 0x00

Note**: Bit Rd\-Wr has no meaning for MLX90614

After POR before to read the temperature additional delay is needed or the first measurements
will not be correct. This additional delay depends on the FIR filter (After POR the digital part of
the MLX90614 is restarted, IIR =100% for the first temperature calculation flow from the module,

Application Note
SMBus communication with MLX90614

390119061402 Page 15 of 32 Jan-2008
Rev 004

see Fig.11. After this first temperature calculation flow from the module, IIR refreshes its value
from EEPROM ConfigRegister<2..0>).
See AppNote ”Understanding MLX90614 on-chip digital signal filters” on
http://www.melexis.com/Asset.aspx?nID=5272 to understand how to calculate this delay time.

Application Note
SMBus communication with MLX90614

390119061402 Page 16 of 32 Jan-2008
Rev 004

Read RAM Block Diagram

Application Note
SMBus communication with MLX90614

390119061402 Page 17 of 32 Jan-2008
Rev 004

The format of SMBus reading from EEPROM is:

EEPROM memory is accessible for reading without restriction.

Pseudo code example: Reading EEPROM address 0x0E (SMBus Address)

1. Send START bit
2. Send Slave Address (0x00* for example) + Rd\-Wr bit**
3. Send Command (0b001x_xxxx + 0b0000_1110 -> 0b0010_1110)
4. Send Repeated START_bit
5. Send Slave Address + Rd\-Wr bit**
6. Read Data Byte Low (master must send ACK bit)
7. Read Data Byte High (master must send ACK bit)
8. Read PEC (master can send ACK or NACK)
9. Send STOP bit

Note* : Any MLX90614 will respond to address 0x00

Note**: Bit Rd\-Wrhas no meaning for MLX90614

Application Note
SMBus communication with MLX90614

390119061402 Page 18 of 32 Jan-2008
Rev 004

Read EEPROM Block Diagram

Application Note
SMBus communication with MLX90614

390119061402 Page 19 of 32 Jan-2008
Rev 004

The format of SMBus writing in EEPROM is:

In Application mode only 9 cells are accessible for writing. An attempt to write not accessible
EEPROM cell results in no change.
Before writing an erasing operation must be done. An erasing operation is just a writing of zeros
in an EEPROM cell. After a/an writing/erasing 5ms are need the new value to be written/erased.
After writing it is strongly recommended that the device is restarted by turning off/on the power
supply or by putting the sensor in/out sleep.

Pseudo code example:

An Erasing of the EEPROM address 0x0E (SMBus Address)

1. Send START bit
2. Send Slave Address (0x00* for example) + Rd\-Wr bit**
3. Send Command (0b001x_xxxx + 0b0000_1110 -> 0b0010_1110)
4. Send Low data 0x00
5. Send High data 0x00
6. Send PEC 0x6F
7. Send STOP bit
8. Wait 5ms (this time is need the cell to be erased)

A writing of 0x5A in EEPROM address 0x0E (SMBus Address)

1. Send START bit
2. Send Slave Address (0x00* for example) + Rd\-Wr bit**
3. Send Command (0b001x_xxxx + 0b0000_1110 -> 0b0010_1110)
4. Send Low Byte 0x5A
5. Send High Byte 0x00 (the high byte of the EEPROM address 0x0E has no meaning)
6. Send PEC 0xE1
7. Send STOP bit
8. Wait 5ms (this time is need the cell to be written)
9. Turn off/Turn on module power supply to reset MLX90614 (After this MLX90614 will
 respond to the new slave address 0x5A)***

Note* : Any MLX90614 will respond to address 0x00

Note**: Bit Rd\-Wr has no meaning for MLX90614

Note***: Put in/Put out a MLX90614 in/from Sleep Mode also resets MLX90614

Application Note
SMBus communication with MLX90614

390119061402 Page 20 of 32 Jan-2008
Rev 004

Write/Erase EEPROM Block Diagram

Note* : For an erasing operation Low and High data byte must be zero

Note**: For an erasing operation no need to restart MLX90614

Application Note
SMBus communication with MLX90614

390119061402 Page 21 of 32 Jan-2008
Rev 004

The format of SMBus transaction which enters Sleep mode is:

Pseudo code example: Put MLX90614 in Sleep mode

1. Send START bit
2. Send Slave Address (0x00* for example) + Rd\-Wr bit**
3. Send command 0xFF
4. Send PEC byte 0xF3
5. Send STOP bit
6. Put the SCL line in low level

Note* : Any MLX90614 will respond to address 0x00

Note**: Bit Rd\-Wr has no meaning for MLX90614

Application Note
SMBus communication with MLX90614

390119061402 Page 22 of 32 Jan-2008
Rev 004

Enter in Sleep Mode Block Diagram

Send STOP bit

Begin

Send START bit

Send Slave Address

ACK from Slave ?

Send command

ACK from Slave ?

Send PEC byte

ACK from Slave ?

Send STOP bit

End

No

Yes

No

Yes

No

Yes

Put SCL line in Low level

Application Note
SMBus communication with MLX90614

390119061402 Page 23 of 32 Jan-2008
Rev 004

The format of a SMBus transaction which reads flags is:

Flags read are:
Data[7] - EEBUSY – the previous write/erase EEPROM access is still in progress. High active.
Data[6] - Unused
Data[5] - EE_DEAD – EEPROM double error has occurred. High active.
Data[4] - INIT – POR initialization routine is still ongoing. Low active.
Data[3] - Not implemented.
Data[2..0] - All zeros.
Data[8..15] - All zeros.
Flags read is a diagnostic feature. The MLX90614 can be used regardless of these flags.

Pseudo code example: Flags reading

1. Send START bit
2. Send Slave Address (0x00* for example) + Rd\-Wr bit**
3. Send Command 0xF0
4. Read Data Byte Low (master must send ACK bit)
5. Read Data Byte High (master must send ACK bit)
6. Read PEC (master can send ACK or NACK)
7. Send STOP bit

Note* : Any MLX90614 will respond to address 0x00

Note**: Bit Rd\-Wr has no meaning for MLX90614

Application Note
SMBus communication with MLX90614

390119061402 Page 24 of 32 Jan-2008
Rev 004

Read Flags Block Diagram

Application Note
SMBus communication with MLX90614

390119061402 Page 25 of 32 Jan-2008
Rev 004

7 Sleep Mode

MLX90614 can enter Sleep Mode via command “Enter SLEEP mode” sent via the SMBus
interface. This mode is not available for the 5V supply version. To limit the current consumption
to 2.5uA (typ), the SCL pin should be kept low during sleep (Fig.9). MLX90614 goes back into
power-up default mode (via POR reset) by setting SCL pin high and then PWM/SDA pin low for
at least tDDq=14ms (Fig.10).

 Fig.9 Fig.10

After the module is awakened and before reading the temperature, an additional delay is
required or the first measurements will not be correct. This additional delay depends on the FIR
filter.
(After wake-up the digital part of the MLX90614 is restarted, IIR =100% for the first temperature
calculation flow from the module, see Fig.11. After this first temperature calculation flow from the
module, IIR restores its value to the value before the module was put in sleep mode).
See AppNote ”Understanding MLX90614 on-chip digital signal filters” on
http://www.melexis.com/Asset.aspx?nID=5272 to understand how to calculate this delay time.

Initialization

T
A
 Offset meas

OS
Ta

= meas(N
Tos

)

filtering
T

OS
= IIR(L

Tos
,OS

Ta
)

T
A
 meas

T
DATA

= meas(N
Ta

)

Offset comp
T

DATAcomp
= T

DATA
-T

OS

filtering
T

D
= IIR(L

Ta
,T

DATAcomp
)

T
A

calculation

T
A

IR Offset meas
OS

IR
= meas(N

IRos
)

filtering
IR

OS
= IIR(L

IRos
,OS

IR
)

IR1 meas
IR1

D
= meas(N

IR
)

Offset comp

IR1
Dcomp

= IR1
D
- IR

OS

filtering
IR1

D
= IIR(L

IR
,IR1

Dg
)

T
OBJ1

calculation

Gain drift
IR

Gm
= meas(N

IRg
)

Offset comp
IR

Gcomp
= IR

Gm
- IR

OS

filtering
IR

G
= IIR(L

G
,IR

Gcomp
)

K
G

calculation

IR
 o

ff
s
e

t

Gain comp
IR1

Dg
= IR1

Dcomp
*K

G

IR2 meas
IR2

D
= meas(N

IR
)

Offset comp

IR2
Dcomp

= IR2
D
- IR

OS

filtering
IR2

D
= IIR(L

IR
,IR2

Dg
)

T
OBJ2

calculation

Gain comp
IR2

Dg
= IR2

Dcomp
*K

G

T
O

B
J

1

T
O

B
J
2

PWM

calculation

Load PWM

registers1

1 2 3

2 3

Fig.11

Application Note
SMBus communication with MLX90614

390119061402 Page 26 of 32 Jan-2008
Rev 004

8 Electrical considerations of SMBus applications with MLX90614

Vss Vss

PP/-OD ; SMBus

PWM/SDA

VddVdd

Vss

Dout

Din

Vss

+Vdd

Vss

SCLin

Vdd

SCL/Vz

Synthesized Zener diode

for building external HV voltage regulator

Fig.12: Input/Output pin schematics of MLX90614

For reliability reasons, the MLX90614 incorporates ESD clamp diodes to Vdd and from Vss.
Therefore a powered-down MLX90614 will load the SMBus. This differs from the SMBus
specification. In power-managed systems it is therefore needed to keep the MLX90614 powered
when the SMBus is needed. This is no issue with sleep mode.

Fig.13: SCL line undershoot with MLX90614

A synthesized Zener diode is integrated on the SCL/Vz pin of the device. It allows simple
implementation of higher voltage regulators. There are several things that influence the SMBus
applications with that feature:
Transient response of SCL pin of MLX90614 adds undershoot to the SMBus SCL line. Rising
edge on the bus results in partial opening of the zener diode, as shown on Fig.13. This
undershoot is typically well beyond the threshold level for high-to-low transition on SCL line.
When an external regulator is build the SCL can no longer be used. This would cause the
regulator to turn off and on with every clock cycle. Use of MLX90614 in >5V system is shown on
Fig. 14. However, if it is needed to have SMBus communication with an MLX90614 already
connected to a schematic like this, it will be necessary to override the power supply regulator as
shown on Fig. 14. Then the SCL pin can be toggled and the SMBus communication will run.
SCL input leakage is increased. In worst case (over temperature and voltage on the SCL pin)
this leakage may significantly exceed the sleep mode power drain of the MLX90614. Sleep

Application Note
SMBus communication with MLX90614

390119061402 Page 27 of 32 Jan-2008
Rev 004

mode is available with the 3V version only, while the zener diode function can be used with the
5V version. However, the zener diode is present in all MLX90614 versions, so the leakage will
be seen on the 3V version too. It is recommended to disable the pull-up on the SCL line in order
to prevent the leakage from increasing the overall power-down power drain of the SMBus
system.

U2C1R1

+V
+5V

SDA

Q1
+V

SCL

R1

SDA

+5V

Voltage regulator

Equivalent

schematics

C2

R1

+5V

U1

MLX90614Axx

1

2

3

4

Vss

S
C

L
/V

z SDA

V
d
d

Q1

U1

MLX90614Axx

1

2

3

4

Vss

S
C

L
/V

z SDA

V
d
d

R3

U1
5.7V

SDA
Vdd

SDA

Vss

SCL

MCU

+5V

C1

SCL

+V

R2

Q1
+5V

SCL

Fig.14: External voltage regulator with MLX90614

The input levels of the MLX90614 are not 100% compliant with the SMBus specification. The
SMBus specification states an input low voltage maximum value of 0.8V and a minimum high
voltage of 2.1V. For the MLX90614 (refer to the data sheet) the specifications differs. When 5V
(also applies for >5V applications) is used, the MLX90614 uses an on-chip voltage regulator (5V
– to – 3V±10%). With the 3V version, the power supply is used directly.
Then, at 5V (as well as at >5V) the internal circuitry of MLX90614 operates at 3V±10%, while at
3V the power supply specification covers 3V±20%. The higher tolerance of this power supply
results in a higher tolerance of the input levels. Worst-case values for MLX90614Axx are
Vin,L=0.5…1.5V and Vin,H=1.6…2.4V (over all temperatures and supply voltages), and for
MLX90614Bxx – 0.5…1,5V and 1.2…2.8V (idem). However, this does not mean, that
MLX90614Axx is likely to have Vin,L=1.5V and Vin,H=1.6V at the same time; also
MLX90614Bxx will not have Vin,L=1.5V and Vin,H=1.2V at the same time. Both thresholds
decrease as the power supply voltage decreases. The two thresholds are also affected by
temperature in the same direction. A hysteresis is provided on both SDA and SCL inputs for
noise immunity.
As a summary, keeping the logic levels on the bus Vlow<0.5V and Vhigh>2.8V will certainly
cover all operational cases with the MLX90614, but is not likely to be really necessary. Detailed
values (guaranteed by design, not test limits) are given below:

Table 8

Vdd (3V) 2.4 2.8 3 3.2 3.6

Vin,L,-40°C,min 0.57 0.75 0.84 0.94 1.13

Vin,L,-40°C,max 0.73 0.91 1.00 1.09 1.29

Vin,L,+27°C,min 0.63 0.82 0.91 1.01 1.20

Vin,L,+27°C,max 0.79 0.97 1.07 1.17 1.36

Vin,L,+125°C,min 0.72 0.91 1.01 1.11 1.30

Vin,L,+125°C,max 0.88 1.07 1.17 1.27 1.46

Vin,H,-40°C,min 1.23 1.61 1.81 2.01 2.40

Vin,H,-40°C,max 1.54 1.93 2.12 2.32 2.69

Vin,H,+27°C,min 1.41 1.80 1.99 2.19 2.57

Vin,H,+27°C,max 1.67 2.03 2.21 2.38 2.74

Vin,H,+125°C,min 1.57 1.93 2.11 2.29 2.64

Vin,H,+125°C,max 1.72 2.07 2.25 2.43 2.77

Application Note
SMBus communication with MLX90614

390119061402 Page 28 of 32 Jan-2008
Rev 004

0.00

0.50

1.00

1.50

2.00

2.50

3.00

2.4 2.8 3 3.2 3.6

Vdd,V (3V vers ion)

VinL, VinH, V
Vin,L,-40°C,min

Vin,L,-40°C,max

Vin,L,+27°C,min

Vin,L,+27°C,max

Vin,L,+125°C,min

Vin,L,+125°C,max

Vin,H,-40°C,min

Vin,H,-40°C,max

Vin,H,+27°C,min

Vin,H,+27°C,max

Vin,H,+125°C,min

Vin,H,+125°C,max

Fig.15: Input voltage levels versus power supply voltage and temperature

Both temperature and supply voltage increase both low and high thresholds.

9 Conclusion
The MLX90614 can easily be used in with the SMBus interface to build a network of sensors.
Also for a single sensor the SMBus interface can be the preferred choice for communicating with
the application controller.
In APPENDIX there are C functions which can be used to implement all SMBus transaction
formats to communicate with MLX90614. Because software implementation of the SMBus is
used, it is easy to adapt these functions for different microcontrollers.

Application Note
SMBus communication with MLX90614

390119061402 Page 29 of 32 Jan-2008
Rev 004

♦ APPENDIX – SMBus exemplary functions for PIC18 using microchip
MCC18 compiler

//SMBus control signals
#define _SCL_IO TRISCbits.TRISC3 // Pin RC3 direction control bit
#define _SDA_IO TRISCbits.TRISC4 // Pin RC4 direction control bit
#define _SCL PORTCbits.RC3 // Assigns pin RC3 for SLC line
#define _SDA PORTCbits.RC4 // Assigns pin RC4 for SDA line

#define mSDA_HIGH() _SDA_IO=1; // Sets SDA line

#define mSDA_LOW() _SDA=0;_SDA_IO=0; // Clears SDA line

#define mSCL_HIGH() _SCL=1;_SCL_IO=0; // Sets SCL line
#define mSCL_LOW() _SCL=0;_SCL_IO=0; // Clears SCL line

//High and Low level of clock @ Fosc=11.0592MHz, Tcy=362ns
#define HIGHLEV 3
#define LOWLEV 1

//Delay constants @ Fosc=11.0592MHz, Tcy=362ns
#define TBUF 2

//***
// START CONDITION ON SMBus
//***
//Name: START_bit
//Function: Generates START condition on SMBus
//Parameters: No
//Return: No
//Comments: Refer to "System Managment BUS(SMBus) specification Version 2.0"
//***
void START_bit(void)
{
 mSDA_HIGH(); // Set SDA line
 Delay10TCYx(TBUF); // Wait a few microseconds
 mSCL_HIGH(); // Set SCL line
 Delay10TCYx(TBUF); // Generate bus free time between Stop
 // and Start condition (Tbuf=4.7us min)
 mSDA_LOW(); // Clear SDA line
 Delay10TCYx(TBUF); // Hold time after (Repeated) Start
 // Condition. After this period, the first clock is generated.
 //(Thd:sta=4.0us min)
 mSCL_LOW(); // Clear SCL line
 Delay10TCYx(TBUF); // Wait a few microseconds
}

Application Note
SMBus communication with MLX90614

390119061402 Page 30 of 32 Jan-2008
Rev 004

//**
// STOP CONDITION ON SMBus
//**
//Name: STOP_bit
//Function: Generates STOP condition on SMBus
//Parameters: No
//Return: No
//Comments: Refer to "System Managment BUS(SMBus) specification Version 2.0"
//***
void STOP_bit(void)
{
 mSCL_LOW(); // Clear SCL line
 Delay10TCYx(TBUF); // Wait a few microseconds
 mSDA_LOW(); // Clear SDA line
 Delay10TCYx(TBUF); // Wait a few microseconds
 mSCL_HIGH(); // Set SCL line
 Delay10TCYx(TBUF); // Stop condition setup time(Tsu:sto=4.0us min)
 mSDA_HIGH(); // Set SDA line
}

//**
// TRANSMIT DATA ON SMBus
//**
//Name: TX_byte
//Function: Sends a byte on SMBus
//Parameters: unsigned char TX_buffer (the byte which will be send on the SMBus)
//Return: unsigned char Ack_bit (acknowledgment bit)
// 0 - ACK
// 1 - NACK
//Comments: Sends MSbit first
//***
unsigned char TX_byte(unsigned char Tx_buffer)
{
 unsigned char Bit_counter;
 unsigned char Ack_bit;
 unsigned char bit_out;

 for(Bit_counter=8; Bit_counter; Bit_counter--)
 {
 if(Tx_buffer&0x80)

bit_out=1; // If the current bit of Tx_buffer is 1 set bit_out
 else

 bit_out=0; // else clear bit_out

 send_bit(bit_out); // Send the current bit on SDA
 Tx_buffer<<=1; // Get next bit for checking
 }

 Ack_bit=Receive_bit(); // Get acknowledgment bit

 return Ack_bit;
}// End of TX_byte()

Application Note
SMBus communication with MLX90614

390119061402 Page 31 of 32 Jan-2008
Rev 004

//--
void send_bit(unsigned char bit_out)
{
 if(bit_out==0) // Check bit

mSDA_LOW(); // Set SDA if bit_out=1
 else

mSDA_HIGH(); // Clear SDA if bit_out=0
 Nop(); //
 Nop(); // Tsu:dat = 250ns minimum
 Nop(); //
 mSCL_HIGH(); // Set SCL line
 Delay10TCYx(HIGHLEV); // High Level of Clock Pulse
 mSCL_LOW(); // Clear SCL line
 Delay10TCYx(LOWLEV); // Low Level of Clock Pulse
// mSDA_HIGH(); // Master release SDA line ,
 return;
}//End of send_bit()

//**
// RECEIVE DATA ON SMBus
//**
//Name: RX_byte
//Function: Receives a byte on SMBus
//Parameters: unsigned char ack_nack (acknowledgment bit)
// 0 - master sends ACK
// 1 - master sends NACK
//Return: unsigned char RX_buffer (Received byte)
//Comments: MSbit is received first
//**
unsigned char RX_byte(unsigned char ack_nack)
{
 unsigned char RX_buffer;
 unsigned char Bit_Counter;

 for(Bit_Counter=8; Bit_Counter; Bit_Counter--)
 {
 if(Receive_bit()) // Read a bit from the SDA line
 {
 RX_buffer <<= 1; // If the bit is HIGH save 1 in RX_buffer
 RX_buffer |=0b00000001;
 }
 else
 {
 RX_buffer <<= 1; // If the bit is LOW save 0 in RX_buffer
 RX_buffer &=0b11111110;
 }
 }

 send_bit(ack_nack); // Send acknowledgment bit

 return RX_buffer;
}// End of RX_byte()

Application Note
SMBus communication with MLX90614

390119061402 Page 32 of 32 Jan-2008
Rev 004

//--

unsigned char Receive_bit(void)
{
 unsigned char bit;

 _SDA_IO=1; // SDA-input
 mSCL_HIGH(); // Set SCL line
 Delay10TCYx(HIGHLEV); // High Level of Clock Pulse

 if(_SDA) // Read bit, save it in bit

bit=1;
 else

bit=0;

 mSCL_LOW(); // Clear SCL line
 Delay10TCYx(LOWLEV); // Low Level of Clock Pulse

 return bit;
}//End of Receive_bit()

//--

