IR Receiver Modules for Remote Control Systems

FEATURES
- Very low supply current
- Photo detector and preamplifier in one package
- Internal filter for 38 kHz IR signals
- Supply voltage: 2.5 V to 5.5 V
- Improved immunity against ambient light
- Capable of side or top view
- Insensitive to supply voltage ripple and noise
- Two lenses for high sensitivity and wide receiving angle
- Narrow optical filter to reduce interference from plasma TV emissions
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION
The TSSP77038 is a compact two lens SMD IR receiver for sensor applications. It has a high gain for IR signals at 38 kHz. The detection level does not change when ambient light or strong IR signals are applied. It can receive continuous 38 kHz signals or 38 kHz bursts. This component has not been qualified according to automotive specifications.

PARTS TABLE
<table>
<thead>
<tr>
<th>CARRIER FREQUENCY</th>
<th>SENSOR APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 kHz</td>
<td>TSSP77038</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

APPLICATION CIRCUIT
The external components R_1 and C_1 are optional to improve the robustness against electrical overstress (typical values are $R_1 = 100 \, \Omega$, $C_1 = 0.1 \, \mu F$).
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>-0.3 to +6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>I_S</td>
<td>5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_O</td>
<td>-0.3 to $(V_S + 0.3)$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>I_O</td>
<td>5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>100</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-25 to +85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{amb}</td>
<td>-25 to +85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>P_{tot}</td>
<td>10</td>
<td>mW</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL AND OPTICAL CHARACTERISTICS $(T_{amb} = 25 {^\circ}C, \text{unless otherwise specified})$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>2.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>I_S</td>
<td>0.55</td>
<td>0.7</td>
<td>0.9</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Transmission distance</td>
<td>$E_v = 40 \text{kx, sunlight}$</td>
<td>I_{SH}</td>
<td>0.8</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output voltage low</td>
<td>$I_{OSL} = 0.5 \text{mA, } E_e = 0.7 \text{mW/m}^2$, test signal see fig. 1</td>
<td>V_{OSL}</td>
<td>100</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Minimum irradiance</td>
<td>$t_{pi} - 5/f_o < t_{po} < t_{pi} + 6/f_o$, test signal see fig. 1</td>
<td>$E_{e \text{min.}}$</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
<td>mW/m2</td>
</tr>
<tr>
<td>Maximum irradiance</td>
<td>$t_{pi} - 5/f_o < t_{po} < t_{pi} + 6/f_o$, test signal see fig. 1</td>
<td>$E_{e \text{max.}}$</td>
<td>50</td>
<td></td>
<td></td>
<td>W/m2</td>
</tr>
<tr>
<td>Directivity</td>
<td>Angle of half transmission distance</td>
<td>$\phi_{1/2}$</td>
<td>\pm 50</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
</tbody>
</table>

TYPICAL CHARACTERISTICS $(T_{amb} = 25 {^\circ}C, \text{unless otherwise specified})$

Note

- Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

Fig. 1 - Output Active Low

Fig. 2 - Pulse Length and Sensitivity in Dark Ambient
Optical Test Signal

Output Function

Output Signal, (see fig. 4)

Optical Test Signal

Output Function

Output Pulse Diagram

Sensitivity vs. Supply Voltage Disturbances

Sensitivity vs. Ambient Temperature

Frequency Dependence of Responsivity

Relative Spectral Sensitivity vs. Wavelength

Correlation with Ambient Light Sources:
- 10 W/m² = 1.4 kLx (Std. illum. A, T = 2855 K)
- 10 W/m² = 8.2 kLx (Daylight, T = 5900 K)

Wavelength of Ambient Illumination: \(\lambda = 950 \text{ nm} \)

Ambient DC Irradiance (W/m²)

Threshold Irradiance (mW/m²)

Relative Spectral Sensitivity

Relative Spectral Sensitivity vs. Wavelength

Correlation with Ambient Light Sources:
- 10 W/m² = 1.4 kLx (Std. illum. A, T = 2855 K)
- 10 W/m² = 8.2 kLx (Daylight, T = 5900 K)

Wavelength of Ambient Illumination: \(\lambda = 950 \text{ nm} \)
Fig. 9 - Horizontal Directivity

Fig. 10 - Vertical Directivity

Fig. 11 - Sensitivity vs. Supply Voltage

21427 \(d_{rel} \) - Relative Transmission Distance

21428 \(d_{rel} \) - Relative Transmission Distance
ASSEMBLY INSTRUCTIONS

Reflow Soldering

- Reflow soldering must be done within 72 h while stored under a max. temperature of 30 °C, 60 % RH after opening the dry pack envelope.
- Set the furnace temperatures for pre-heating and heating in accordance with the reflow temperature profile as shown in the diagram. Exercise extreme care to keep the maximum temperature below 260 °C. The temperature shown in the profile means the temperature at the device surface. Since there is a temperature difference between the component and the circuit board, it should be verified that the temperature of the device is accurately being measured.
- Handling after reflow should be done only after the work surface has been cooled off.

Manual Soldering

- Use a soldering iron of 25 W or less. Adjust the temperature of the soldering iron below 300 °C.
- Finish soldering within 3 s.
- Handle products only after the temperature has cooled off.
VISHAY LEAD (Pb)-FREE REFLOW SOLDER PROFILE

TAPING VERSION TSSP..TR DIMENSIONS in millimeters

Drawing-No.: 9.700-5337.01-4
Issue: 1: 16.10.08

technical drawings according to DIN specifications
Taping Version TSSP..TT Dimensions in millimeters

Direction of feed

Ø 1.5 min.

Drawing-No.: 9.700-5338.01-4
Issue: 3; 09.06.09

Vishay Semiconductors

Rev. 1.0, 09-Mar-12

Document Number: 82470

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
REEL DIMENSIONS in millimeters

![Reel Dimensions Diagram]

LEADER AND TRAILER DIMENSIONS in millimeters

<table>
<thead>
<tr>
<th>Trailer</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>no devices</td>
<td>devices</td>
</tr>
<tr>
<td>min. 200</td>
<td>min. 400</td>
</tr>
</tbody>
</table>

COVER TAPE REEL STRENGTH

According to DIN EN 60286-3

- 0.1 N to 1.3 N
- 300 ± 10 mm/min.
- 165° to 180° peel angle

LABEL

Standard bar code labels for finished goods

The standard bar code labels are product labels and used for identification of goods. The finished goods are packed in final packing area. The standard packing units are labeled with standard bar code labels before transported as finished goods to warehouses. The labels are on each packing unit and contain Vishay Semiconductor GmbH specific data.
DRI PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 72 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

- 192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen)
- 96 h at 60 °C + 5 °C and < 5 % RH for all device containers
- 24 h at 125 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC standard JSTD-020 level 4 label is included on all dry bags.
ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS (example)

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.