with Feedback

Pololu User s Guide (preliminary)

@ 3-Amp Motor Confroller

Contents:
Safety Warning
Contacting Pololu
Motor Controller Layout and Pinouts
Connecting the Motor Controller
PID Control and the Motor Feedback Modes
Basics of the Serial Interface
Using the Motor Controller
Example BASIC Stamp Il Program
Troubleshooting Tips
Configuring the Motor Controller
Description and Specifications

[ISR SMCO3A

Pololu http://www.pololu.com/

& Important Safety Warning

The motor controller module is not intended for young children!
Younger users should use this module only under adult supervision.
By using this product, you agree not to hold Pololu liable for any
injury or damage related to the use or to the performance of this
product. This productis not designed for, and should not be used
in, applications where the malfunction of the product could cause
injury or damage.

Contacting Pololu

You can check the Pololu web site at http://www.pololu.com/ for the latest
information about the motor controller, including color pictures, application examples,
and troubleshooting tips.

We would be delighted to hear from you about your project and about your experience
with our motor controller. You can contact us through our online feedback form or by

email at support@pololu.com. Tell us what we did well, what we could improve,
what you would like to see in the future, or anything else you would like to say!

Motor Controller Layout and Pinouts

feedback select jumper
20 8] &
[¢] el [0]
o % il
: 8

|| diode bypass jumper

input select jumper
RN

ground (0 V)

regulated power (5 V)
serial or RC control input
green LED/serial output |k
reset |k

red LED/status
tachometer input
analog control input
analog feedback input

serl

analos

§ motor power (6-18 V)
ground (0 V)

motor positive output

motor negative output

green LED red LED

© 2005 2

Pololu http://www.pololu.com/

Connecting the Motor Controller

The connections to the motor controller are shown on the facing page, and the block
diagram below shows how the motor controller would typically be integrated into a
motion control system. There are three main connections to make: the motor itself, the
motor power, and motor control inputs. For the control inputs, you can use one of three
motor control interfaces (serial, hobby radio control, or analog voltage) and one of two
optional feedback options (tachometer for speed feedback or analog voltage for
position feedback).

Connecting Power. The main power connections for the motor controller are on the
upper-right corner of the board. Your power source should be between 6 V and 18V,
and it must be able to supply the current that the motor will draw.

A reversed-battery protection diode is incorporated into the motor controller. This
diode has a low voltage drop but still results in a few tenths of a volt being lost between
the battery voltage and the motor output (in addition to the losses of the motor driver H-
Bridge). This diode can be bypassed by installing a shunt in location “J3”.

Connecting the Motor. The motor output ports are on the lower-right corner of the
board. The polarity of the motor connection does not matter too much, but the “motor
positive output” will be positive when the motor is set to go “forward” with the motor
direction reverse option turned off. Of course, “forward” is a relative term, and if the
motor goes in the opposite direction from what you desire, you can switch the two
motor lead connections or enable the motor direction reverse setting.

Typical Application Block Diagram

Pololu SMCO3A Motor Controller Module

Use one of three [
input modes to 1 Mode
communicate with . Select
the motor controller. * Jumpers
: ——————
u u u u :3 Y VY

Il Il [PIC16F684

Microcontroller

8
-
'\/\/-\ { ﬂ7 Hg L]
v Sensors coupled
to motor output
. #Z; §< provide feedback
to motor controller.
© 2005 3

Pololu http://www.pololu.com/

Connecting the Motor Controller (continued)

Control Inputs. The control inputs are the connection points for the main controlling
unit (such as arobot controller or radio control receiver) and any feedback signals. The
control inputs are along the left side of the board, and their functions depend on the
modes selected by the input select and feedback select jumpers. The “Vcc” connection
provides regulated 5 V that can be used as a power source for the feedback sensors or
for the main control unit. The current drain from this pin should not exceed 90 mA.

Reset (pin 5). Thereset inputis internally kept high (at5 V) through a 1 kOhm resistor.
Bringing this line low for at least 2 microseconds will reset the motor controller,
bringing it to the same state as if it had just been turned on. This input can generally be
left disconnected.

Status outputs (pins 4 and 6). Pins 4 and 6 are connected to the red and green LEDs
and indicate various statuses depending on the modes selected by the input select and
feedback select jumpers. These outputs can generally be left disconnected.

Motor Control Interfaces

The motor controller supports either an analog voltage interface, a hobby RC (radio
control) interface, or a serial interface. Each interface allows you to control either the
direction and speed or the position of the motor, depending on the feedback mode you
choose: no feedback, analog voltage (motor position) feedback, or tachometer (motor
speed) feedback.

Analog Voltage Interface

The analog voltage interface allows you to control the motor using a device that outputs
an analog voltage, such as a potentiometer. To select the analog voltage interface,
place a shorting block across the upper two pins in the “input select jumper” (J1) as
illustrated on page 2.

The neutral, or stopped value for the analog input is 2.5 V. Lowering the voltage will
increase the speed in reverse; raising the voltage will increase the speed forward.

Hobby RC (Radio Control) Interface

The Hobby RC interface allows you to control the motor with a standard hobby RC
transmitter and receiver pair; you can also use any device that outputs the standard
servo control signal (50 Hz train of 1-2 ms pulses), such as a serial servo controller. To
select the hobby RC interface, place a shorting block across the lower two pins in the
“input select jumper” (J1) as illustrated in page 2. Connect a ground line off of the
receiver to the motor controller GND pin and the RC control signal to pin 3.

A 1.5-ms pulse is neutral or stopped, with longer pulses raising the speed forward and
shorter pulses increasing the speed in reverse.

© 2005 4

Pololu http://www.pololu.com/

Serial Interface

The serial interface allows motor control with a series of commands over an
asynchronous serial link. This interface would typically be used with a computer or
robot controller. The serial link must be non-inverted, with a baud rate of
approximately 2,000-40,000. The motor controller will automatically detect the baud
rate that you are using. The serial inputis pin 3.

The details of the serial interface are covered in “Basics of the Serial Interface” below.

Important note: unlike RS-232 serial lines (the standard for serial ports used to
connect devices to personal computers), the motor controller uses logic voltages
between 0 and the supply voltage (5 V). The higher voltages used on RS-232 lines will
damage the motor controller. If you need to convert RS-232 levels to TTL levels, you
will need to use a level converter such as the MAX220 (made by Maxim). You could
also use the simple circuit shown to the right.

(The handshaking lines, pins 4, 6, 7,and 8 ona DBZ serial ; > tologic
DB9 connector might be necessary depending BO\C c]mnec R supply (pin 2)
on the serial port and software accessing it.) | % Te 4.7k

When building circuits that connect to a o—% R2 +—» 1o serial
PC, be especially careful because you could o137/ JOK control input
potentially destroy the PC’s serial port. © olsl M (pin 3)
Before attempting to connect your own |o—! Ql

electronics to a computer, make sure you oy 2N2222| foground
know what you are doing! = > (pin 1)

PID Control and the Motor Feedback Modes

The primary feature of this motor controller is the ability to use feedback from sensors
to continually update the motor operation. Ifone of the two feedback modes is enabled,
the motor controller uses a proportional-integral-derivative (PID) algorithm to
continually minimize the feedback error. This error is the difference between the
desired condition, set by the user through one of the input modes, and the actual
condition, reported back by a sensor that somehow monitors the motor output. Two
separate types of sensors are supported: an analog voltage sensor and a frequency
sensor. The general concept of feedback-based control is illustrated below:

Target Condition Error PID algorithm OUtpUt
> changes output to
minimize error
Actual
Condition Output sensor
provides feedback
© 2005 5

Pololu http://www.pololu.com/

Analog Voltage Motor Feedback (Position) $
4_

In position feedback mode, an analog voltage representing a measurement of

the output is connected to pin 9. The voltage range must be 0-5 V, and this
voltage is converted into an 8-bit representation. A potentiometer is the most typical
sensor for this mode, but any other device that provides an analog voltage output, such
as the Sharp GP2Y0A21YK optical distance sensors, can be used.

Frequency Motor Feedback (Speed) #Z; @ 3 l:

In frequency feedback mode, an oscillating signal is connected to pin 7.

The frequency of the oscillation is measured with 7 bits of resolution. A

typical application for this mode of operation is a tachometer that uses an infrared
emitter and detector pair and a slotted wheel to measure rotational speed.

The PID Calculation

The motor controller minimizes the error between the desired state and the measured
state using three terms: one that is proportional to the error, one that is proportional to
the integral of the error (limited to 255), and one that is proportional to the derivative of
the error. The full equation for the calculation is

output = c.E + cZE + c, AE

PID

where E is the error, €, €,, and ¢, are the user-specified coefficients, and T, is the PID
loop period, which is also user configurable.

Each of the three coefficients are specified through two parts: a multiplicative
coefficient and an exponent that divides the result. For example, setting the parameters
ERRORMULT to 29 and ERRORDIV to 3 will result in the error term being multiplied
by 29/2’=29/8=3.625.

The PID loop period is a multiple of the PWM (pulse width modulation) period of 510
microseconds, based on the PIDRATE parameter, of which bits 6-3 specify a
coefficient and bits 2-0 specify a base-2 exponent:

T., = 510 us x [(PIDRATEG6:3) + 1] x QPIDRATEZ:0

All of the parameters can be set through the serial interface, and the optimal
coefficients must be determined experimentally. In general, begin by setting the
proportional term and leaving the integral term and derivative term 0. Depending on
the application, a proportional term alone could cause oscillations or inability to correct
for small errors. Increasing the integral term improves correction for small errors but
can contribute to oscillation if the integral term is too large. The derivative term
functions as a brake when the error is rapidly being reduced, which limits oscillation.

© 2005 6

Pololu http://www.pololu.com/

Basics of the Serial Interface

The motor controller uses a serial interface to communicate with a main controller,
which could be a small microprocessor or a desktop computer. To use the motor
controller, you must program your main controller to send data with the correct format
to the motor controller’s asynchronous serial input, pin 3.

The motor controller expects eight bits at a time (with no parity bit) at a constant baud
rate ranging from 2000 to 40000 (the motor controller will automatically detect the
baudrate). The serial bits must be at logic levels and non-inverted, meaning that a zero
is sent as a low voltage, and a one is sent as a high

voltage, as shown in the diagram to the right. (An LsB MSB
inverting circuit must be used with a PC serial port 10011010

since it outputs inverted serial data.) Commands
ov

sent to the serial input must conform to the above

format or else the motor controller and other { rTE‘T { ;
devices connected to the serial line may behave sl ol Siop Bt
unexpectedly.

Once you can send individual bytes correctly, you must send the correct sequence of
bytes to get the motor controller to run your motors. This motor controller interface
protocol is compatible with other Pololu serial devices such as our servo controller, so
you can control multiple Pololu serial devices on a single line. The protocol requires
one start byte, a one-byte device identifier, and then any number of bytes, as required by
the device specified in the second byte:

| start byte = 0x80 | device type | data byte 1 | data byte 2 |

The start byte is identified by its most significant bit being set; all subsequent bytes
must have bit 7 clear, giving them possible values of 0 to 0x7F (0 to 127 decimal).
Whenever a byte is transmitted on the serial line, all devices on that line check to see if
the byte is the start byte; if it is, then all devices check the next byte to see if the data is
meant for them. All subsequent bytes, the data bytes in the diagram above, are only
interpreted by the appropriate devices, while all other devices wait for anew start byte.

If you did not understand all of the details above and you just want to use your motor
controller, don’t worry. You just need to use the right serial settings and send the
correct sequences of bytes, as described on the following pages.

Summary: Use non-inverted, logic-level serial transmission at baud rates
between 2000 and 40000, 8 bits at a time with no parity and one stop bit.

© 2005 7

Pololu http://www.pololu.com/

Using the Motor Controller

To set the speed and direction of a motor, send a four-byte command with the following
structure to the motor controller:

|s’ror’r byte = Ox80| device type = 0x00 |motor # and direc’rion| motor speed|

The Four-Byte Motor Controller Command

Byte 1: Start Byte. This byte should always be 0x80 (128 in decimal) to signify the
beginning of a command. The start byte is the only byte with the highest bit (bit 7) set,
and it alerts all devices on the serial line that a new command is being issued. All
succeeding bytes sent down the serial line must have their highest bit cleared to zero.

Byte 2: Device Type. This byte identifies the device type for which the command is
intended, and it should be 0x00 for commands sent to this motor controller. All devices
that are not motor controllers ignore all subsequent bytes until another start byte is sent.

Byte 3: Motor Number and Direction. This byte ©it7 bit 0
has three parts, as shown in the diagram to the right: | 0 | X | X | X | X | X | X | X |

e Bit 0 specifies the direction of the motor. Set |
this bit to 1 to make the motor go forward; clear S
the bit to make it go backward. bit 0: direction
1 = forward
e Bits 1-6 specify the motor number. All motor 0 = reverse
controllers respond to motor number 0 bits 1-6: motor
number
e Bit7mustbecleared since this is not a start byte. '
bit 7: always 0

To obtain the complete byte 3 value from a motor number and a direction, multiply the
motor number by 2 and add 1 if the direction is forward. For example, to make motor 5
go forward, byte three should be 5x2 + 1 =11. To make motor 1 go backward, byte 3
shouldbe 1 x2=2. (Two efficient ways to multiply by 2 in a microcontroller program
are shifting left by one digit or adding the motor number to itself.)

Byte 4: Motor Speed. The most significant bit must be zero since this is not a start
byte. The remaining seven bits specify the motor speed. The possible range of values
for byte 4 is thus 0x00 to 0x7F (0 to 127 decimal). 0x00 turns the motor off, and 0x7F
turns the motor fully on; intermediate values correspond to intermediate speeds.
Setting a speed of 0 in reverse will cause the motor controller to hold position 0 using
the PID loop; setting a speed of 0 forward will cause the PID loop to be turned off.

Examples: (Using PBASIC “SEROUT” command with serial line on pin 5)

' “84” parameter sets up 9600 baud serial communication
SEROUT 5, 84,([$80,0,5,127] ‘motor 2 full on, forward

SEROUT 5, 84, [$80,0,5,0] ‘motor 2 off, forward (coasting)
SEROUT 5, 84, [$80,0,4,0] ‘motor 2 holding position 0
© 2005 8

Pololu http://www.pololu.com/

Controlling Multiple Motor Controllers with One Serial Line

To control a particular motor, you must specify its motor number in command byte 3.
Regardless of configuration, every motor controller responds to commands for motor
number 0. To control more than one motor with a single serial line, you need to use
motor numbers 1 through 63. Configure each motor controller to respond to different
motor numbers, then connect them to the same serial line; each motor controller will
respond only to the motor number to which it is configured. After you configure a
motor controller, you can write its motor number on a label to keep track of your motor
numbers.

Example BASIC Stamp II Program

The program on the next page, which can run on a BASIC Stamp II controller, makes
motor 1 gradually speed up, then slow down, then speed up in the other direction, and
then slow down again. For the code to work, pin 15 mustbe connected to the reset input
(pin 5), and pin 14 must be connected to the serial input (pin 3). The interface code
should look similar in other programming languages; the description below should
help you in understanding the code and, if necessary, in translating it to other
languages.

On line 1, the 8-bit variable speed is declared for later use. The serial line is then taken
high, to its idle state, before the motor controller is reset by a low-going pulse on pin 15
(lines 3 and 4). A 100-ms pause on line 5 ensures that the motor controller is up and
running before any serial data is sentto it.

The first for loop on lines 6-9 causes motor 1 to gradually speed up. The serial output is
created by the serout statement on line 7. The first parameter, 14, specifies the pin
number through which to send the serial signal. The next parameter, 84, sets up the
serial characteristics to be 8 bits with no parity, non-inverted, at a baud rate of 9600.
The four numbers in square brackets are the data to be sent, and they correspond to the
four control bytes for the motor controller. The first two bytes should always be $80
and 0. The second 0 makes motor 1 go backward. The speed variable, which increases
every time through the loop, is the only part of the command that changes, and that is
what makes the motor gradually speed up. The pause statement on line 8§ causes the
program to wait for 20 ms (0.02 seconds) before sending the next command.

When the first loop ends, the motor is set to its full speed of 127. The second loop on
lines 10-13 slows the motor back down by sending speeds from 127 down to 0. The
next two loops on lines14-21 then repeat the process, except for the parameter value of
1 in byte three, which causes motor 1 to spin forward.

© 2005 9

Pololu http://www.pololu.com/

@ J oUW N

)
NP o

13
14
15
16
17
18
19
20
21

speed var Dbyte

high 14 ‘take serial line high

low 15 ‘reset motor controller

high 15

pause 100 ‘motor controller startup time

for speed =0 to 127
serout 14,84, [$80, 0, 0,speed]
pause 20

next

for speed =127 to 0
serout 14,84, [$80, 0, 0,speed]
pause 20

next

for speed =0 to 127
serout 14,84, [$80, 0, 1,speed]
pause 20

next

for speed =127 to 0
serout 14,84, [$80, 0, 1,speed]
pause 20

next

Troubleshooting Tips

All motor controllers are fully tested prior to shipment; if your motor controller does
not work at first, it can be difficult to determine the cause. Nevertheless, patience and
meticulous attention to detail, along with these few tips, should usually help you
through.

Pololu

Double check all of your connections. Are your logic and motor supply grounds
connected?

Double check your code. Are your baud rate settings correct? If you cannot get
your design working with the top baud rate of 40000, try lowering it to 9600, where
slight timing mismatches are less likely to frustrate your efforts.

Are you using the correct motor number? If nothing seems to be working, start by
using motor number 0, which should work regardless of the configuration.

If your motors unexpectedly run for a second then stop for a second and repeat, your
motor controller is probably overheating, and the thermal protection feature is
being activated. You can help the situation by putting a heat sink on the motor
driver chip, lowering your motor supply voltage, and putting short stops between
changes in motor direction.

Setting the PID coefficients to certain values can cause unexpected results. If you
are in a feedback mode, check what you are setting the PID loop to do.

© 2005 10
http://www.pololu.com/

Configuring the Motor Controller

To change any of the settings of the motor cotnroller, send a four-byte command with
the following structure to the motor controller:

|s’ror’r byte = Ox80| config type = 0x02 | parameter address value

The configuration command is very similar to the usual speed setting command, but
byte 2 has a device type of ‘2’ instead of ‘0’. The next two bytes specify the parameter
thatis to be set and the value for that parameter. The parameters and their functions are
listed below:

address name

0

Pololu

MOTORID

ERRORMULT

ERRORDIV

INTEGMULT

INTEGDIV

DERIVMULT

DERIVDIV

PIDRATE

MISCPARAMS

© 2005
http://www.pololu.com/

description
motor number to which this motor controller responds
validrange is 0-63; default valueis 1

error (proportional) term multiplier
valid range is 0-127; default value is 21

error (proportional) term divider
valid range is 0-7; default value is 1

integral term multiplier
valid range is 0-127; default value is 3

integral term divider
validrange is 0-7; default value is 4

derivative term multiplier
valid range is 0-127; default valueis 16

integral term divider
valid range is 0-7; default value is 1

sets the PID update rate
validrange is 0-127; default value is 72 (195 Hz)

direction inversion bits and frequency feedback divider
bits 4-3 set the frequency feedback divider

bit 2 inverts the analog feedback if set

bit 1 inverts the analog control input if set

bit 0 inverts the motor direction if set

validrange is 0-31, default value is 0

11

The Pololu 3-Amp Motor Controller with Feedback

The Pololu 3-Amp motor controller with feedback simplifies servo control of
commonly available DC motors. The module features three independent interfaces: a
serial protocol for microcontroller-based applications, a pulse-width interface for
connection to hobby radio control equipment or serial servo controllers, and an analog
voltage interface for simple tests and demonstrations. Two feedback alternatives allow
for closed-loop control of position or speed.

The 3-A motor controller offers a complete feedback-based solution for applications
requiring bi-directional, closed-loop control of motor speed or motor position. You
can select either an analog voltage feedback or a digital encoder feedback (quadrature
encoding is not supported). Various simple devices such as potentiometers can be used
as sensors to achieve position or speed control.

In a typical application, a user first sets up the motor controller's parameters to suit the
mechanical system that is being driven. A feedback potentiometer is coupled to the
mechanism output, and the user can then send position commands to the motor
controller, which automatically drives the motor to reach the position. Alternatively,
the mechanism and sensor can be arranged to provide speed feedback, in which case the
motor controller maintains given speeds despite fluctuations in friction or supply
voltage.

The motor controller measures 1.4" x 1.4" and has an operating voltage of 6-18 volts,
making the device well-suited for small robots and other projects using toy motors and
rechargeable 7.2 V or 9.6 V battery packs. The motor controller serial protocol is
compatible with other Pololu motion control devices, allowing multiple units to be
connected to a single serial line to control a mixture of motors sizes and hobby RC
Servos.

Specifications
PCB Size....ccoeveeieiieeeee 1.4"x1.4"
Motor ports.......cceeeeveeernuveenne 1
Motor speeds.......cc.ccveeveennenn. 127 forward and backward, off
Motor Positions...................... 256 (analog modes)
Maximum current................... 3A
Motor supply voltage............. 6-18V
PWM frequency.......cccccouennuee 2kHz
Serial baud rate....................... 2000-40000 (automatically detected)
© 2005 12

Pololu http://www.pololu.com/

