Pololu

Contents:

Pololu

High-Power Motor

Controller with Feedback
User’s Guide (preliminary)

Safety Warning

Contacting Pololu

Motor Controller Layout and Pinout
Connecting the Motor Controller
PID Control and the Motor Feedback Modes
Basics of the Serial Interface

Using the Motor Controller
Example BASIC Stamp Il Program
Troubleshooting Tips

Tips for Best Results
High-Resolution Serial Interface
Diagnostic LEDs and Serial Output
Configuring the Motor Controller
Description and Specifications

© 2006

SMCO04B

http://www.pololu.com/

& Important Safety Warning

The motor controller module is not intended for young children!
Younger users should use this module only under adult supervision.
By using this product, you agree not to hold Pololu liable for any
injury or damage related to the use or to the performance of this
product. This productis not designed for, and should not be used
in, applications where the malfunction of the product could cause
injury or damage.

Contacting Pololu

You can check the Pololu web site at http://www.pololu.com/ for the latest
information about the motor controller, including color pictures, application examples,
and troubleshooting tips.

We would be delighted to hear from you about your project and about your experience
with our motor controller. You can contact us through our online feedback form or by
email at support@pololu.com. Tell us what we did well, what we could improve,
what you would like to see in the future, or anything else you would like to say!

Motor Controller Layout and Pinout

feedback select jumper - > A
o = S .3 N)
c@l o | & F =+ O
20| g | 2 e & & @
slo] & L & & &
3 S O%QQW%QgQ %,%
input Q O TG XGALR
select EXCICR Polo O4F)
jumper i : :
oo g © . J4s] = = motor +
glo| g | = g 17 B A output
“lal & ; Adfe] = : motor
e Sk Ca - -
Bsorns oo
(XX BYP reverse-
E battery
protection
bypass
input power
GND Vcc Tachometer IN PID rate] - connection
diagnostic input power
GND Vcc Analog interface + connection
reset (6-16 V)
GND Vcc Analog feedback
© 2006 2

Pololu http://www.pololu.com/

Connecting the Motor Controller

The connections to the motor controller are shown on the facing page, and the block
diagram below shows how the motor controller would typically be integrated into a
motion control system. There are three main connections to make: the motor itself, the
motor power, and motor control inputs. For the control inputs, you can use one of three
motor control interfaces (serial, hobby radio control, or analog voltage) and one of two
optional feedback options (tachometer for speed feedback or analog voltage for
position feedback).

Connecting Power. The main power connections for the motor controller are on the
lower end of the board. Your power source should be between 6 V and 16V, and it must
be able to supply the current that the motor will draw.

Areversed-battery protection MOSFET is incorporated into the motor controller. This
device has a low voltage drop but still results in a few tenths of a volt being lost between
the battery voltage and the motor output (in addition to the losses of the motor driver H-
Bridge). The MOSFET can be bypassed by connecting the negative power terminal to
the bypass terminal. The non-bypass negative terminal must also be connected.

Connecting the Motor. The motor output ports are on the right side of the board. The
polarity of the motor connection does not matter too much, but the “motor positive
output” will be positive when the motor is set to go “forward” with the motor direction
reverse option turned off. Of course, “forward” is arelative term, and if the motor goes
in the opposite direction from what you desire, you can switch the two motor lead
connections or enable the motor direction reverse setting.

Typical Application Block Diagram

Pololu SMC04B Motor Controller Module

U - ! VIN 6-16 V
se one of three s
input modes to ' g/lode] [
communicate with . Jurilsglt's] —
the motor controller. * 4
: e e GND : T
LI : vy Vv . 30AMax.
- OouUT+ ,
” ” Ly E’IC16F876A
1 Microcontroller

w ;
v Sensors coupled
VVV to motor output

. #Z;@ 3 < provide feedback

to motor controller.

© 2006 3

Pololu http://www.pololu.com/

Connecting the Motor Controller (continued)

Control Inputs. The control inputs are the connection points for the main controlling
unit (such as arobot controller or radio control receiver) and any feedback signals. The
control inputs are along the top and left sides of the board. The “Vcc” connection
provides regulated 5 V that can be used as a power source for the feedback sensors or
for the main control unit. The current drain from this pin should not exceed 75 mA.

Reset. The reset input is internally kept high (at 5 V) through a 10 kOhm resistor.
Bringing this line low for at least 2 microseconds will reset the motor controller,
bringing it to the same state as if it had just been turned on. This input can generally be
left disconnected.

Motor Control Interfaces

The motor controller supports either an analog voltage interface, a hobby RC (radio
control) interface, or a serial interface. Each interface allows you to control either the
direction and speed or the position of the motor, depending on the feedback mode you
choose: no feedback, analog voltage (motor position) feedback, or tachometer (motor
speed) feedback.

Analog Voltage Interface

The analog voltage interface allows you to control the motor using a device that outputs
an analog voltage, such as a potentiometer. To select the analog voltage interface,
place a shorting block across the upper two pins in the “input select jumper” (J1) as
illustrated on page 2.

The neutral, or stopped value for the analog input is 2.5 V. Lowering the voltage will
increase the speed in reverse; raising the voltage will increase the speed forward.

Hobby RC (Radio Control) Interface

The Hobby RC interface allows you to control the motor with a standard hobby RC
transmitter and receiver pair; you can also use any device that outputs the standard
servo control signal (50 Hz train of 1-2 ms pulses), such as a serial servo controller. To
select the hobby RC interface, place a shorting block across the lower two pins in the
“input select jumper” (J1) as illustrated in page 2. Connect the RC signal to the pin
labeled “RC” on the upper-left corner of the board. A ground pinis available nextto it.

A 1.5-ms pulse is neutral or stopped, with longer pulses raising the speed forward and
shorter pulses increasing the speed in reverse.

Serial Interface

The serial interface allows motor control with a series of commands over an
asynchronous serial link. This interface would typically be used with a computer or
robot controller. The controller automatically detects a baud rate of approximately
2,000-60,000.

© 2006 4

Pololu http://www.pololu.com/

Serial Interface (continued)

There are two serial pins that can be used. The TTL-level serial input is for non-
inverted data at logic levels. For direct connections to a PC serial port or other inverted
sources, the RS-232 serial input pin can be used. The serial output pin transmits motor
controller diagnostic data, which can be used to tune the PID parameters and to detect
fault conditions. The serial output can be ignored in many cases.

When building circuits that connect to a PC, be especially careful because you
could potentially destroy the PC’s serial port. Before attempting to connect your
own electronics to a computer, make sure you know what you are doing!

The details of the serial protocol are covered in “Basics of the Serial Interface”.

PID Control and the Motor Feedback Modes

The primary feature of this motor controller is the ability to use feedback from sensors
to continually update the motor operation. Ifone ofthe two feedback modes is enabled,
the motor controller uses a proportional-integral-derivative (PID) algorithm to
continually minimize the feedback error. This error is the difference between the
desired condition, set by the user through one of the input modes, and the actual
condition, reported back by a sensor that somehow monitors the motor output. Two
separate types of sensors are supported: an analog voltage sensor and a frequency
sensor. The general concept of feedback-based control is illustrated below:

Target Condition Error PID algorithm Output
> changes output to
minimize error
Actual
Condition Output sensor
provides feedback
Analog Voltage Motor Feedback (Position) é
4_
In position feedback mode, an analog voltage representing a measurement of

the output is connected to the analog feedback pin. The voltage range must be

0-5'V, and this voltage is converted into a 10-bit representation. A potentiometer is the
most typical sensor for this mode, but any other device that provides an analog voltage
output, such as the Sharp GP2Y0A21YK optical distance sensors, can be used.

© 2006 5

Pololu http://www.pololu.com/

Frequency Motor Feedback (Speed) #Z’ @ . <
~ <

In frequency feedback mode, an oscillating signal is connected to the

tachometer feedback pin. The frequency of the oscillation is measured

with 10 bits of resolution. A typical application for this mode of operation

is a tachometer that uses an infrared emitter and detector pair and a slotted wheel to
measure rotational speed.

The PID Calculation

The motor controller minimizes the error between the desired state and the measured
state using three terms: one that is proportional to the error, one that is proportional to
the integral of the error, and one that is proportional to the derivative of the error. The
full equation for the calculation is

output =c.E + cZE + ¢, AE

PID
where E is the error, ¢, €¢,, and ¢, are the user-specified coefficients, and T, is the PID

loop period, which is also user configurable.

Each of the three coefficients are specified through two parts: a multiplicative
coefficient and an exponent that divides the result. For example, setting the parameters
ERRORMULT to 29 and ERRORDIV to 3 will result in the error term being multiplied
by 29/2'=29/8 =3.625.

The PID loop period is a multiple of the PWM (pulse width modulation) period (set by
PWMFREQ), based on the PIDRATE parameter, of which bits 6-3 specify a coefficient
and bits 2-0 specify a base-2 exponent:

Too = Toww X [(PIDRATEG6:3) + 1] x 27°FA™2¢
where

T..u =51 us if PWMFREQ = 0
204 us if PWMFREQ = 1
816 us if PWMFREQ = 2

All of the parameters can be set through the serial interface, and the optimal
coefficients must be determined experimentally. In general, begin by setting the
proportional term and leaving the integral term and derivative term 0. Depending on
the application, a proportional term alone could cause oscillations or inability to correct
for small errors. Increasing the integral term improves correction for small errors but
can contribute to oscillation if the integral term is too large. The derivative term
functions as a brake when the error is rapidly being reduced, which limits oscillation.

© 2006 6

Pololu http://www.pololu.com/

Basics of the Serial Interface

The motor controller uses a serial interface to communicate with a main controller,
which could be a small microprocessor or a desktop computer. To use the motor
controller, you must program your main controller to send data with the correct format
to the motor controller’s asynchronous serial input.

The motor controller expects eight bits at a time (with no parity bit) at a constant baud
rate ranging from 2000 to 60000 (the motor controller will automatically detect the
baudrate). The serial bits must be at logic levels and non-inverted, meaning that a zero
is sent as a low voltage, and a one is sent as a high

voltage, as shown in the diagram to the right. (The LsB MSB
RS-232 (inverting) input must be used with a PC 10011010

serial port since it outputs inverted serial data.)
ov

Commands sent to the serial input must conform to

the above format or else the motor controller and / \ / \
. . . start bit stop bit

other devices connected to the serial line may

behave unexpectedly.

Once you can send individual bytes correctly, you must send the correct sequence of
bytes to get the motor controller to run your motors. This motor controller interface
protocol is compatible with other Pololu serial devices such as our servo controller, so
you can control multiple Pololu serial devices on a single line. The protocol requires
one start byte, a one-byte device identifier, and then any number of bytes, as required by
the device specified in the second byte:

| start byte = 0x80 | device type | data byte 1 | data byte 2 |

The start byte is identified by its most significant bit being set; all subsequent bytes
must have bit 7 clear, giving them possible values of 0 to 0x7F (0 to 127 decimal).
Whenever a byte is transmitted on the serial line, all devices on that line check to see if
the byte is the start byte; if it is, then all devices check the next byte to see if the data is
meant for them. All subsequent bytes, the data bytes in the diagram above, are only
interpreted by the appropriate devices, while all other devices wait for anew start byte.

If you did not understand all of the details above and you just want to use your motor
controller, don’t worry. You just need to use the right serial settings and send the
correct sequences of bytes, as described on the following pages.

Summary: Use non-inverted, logic-level serial transmission at baud rates
between 2000 and 60000, 8 bits at a time with no parity and one stop bit.

© 2006 7

Pololu http://www.pololu.com/

Using the Motor Controller

To set the speed and direction of a motor, send a four-byte command with the following
structure to the motor controller:

|s’ror’r byte = 0x80| device type = 0x00 |motor # and direc’rion| motor speed|

The Four-Byte Motor Controller Command

Byte 1: Start Byte. This byte should always be 0x80 (128 in decimal) to signify the
beginning of a command. The start byte is the only byte with the highest bit (bit 7) set,
and it alerts all devices on the serial line that a new command is being issued. All
succeeding bytes sent down the serial line must have their highest bit cleared to zero.

Byte 2: Device Type. This byte identifies the device type for which the command is
intended, and it should be 0x00 for commands sent to this motor controller. All devices
that are not motor controllers ignore all subsequent bytes until another start byte is sent.

Byte 3: Motor Number and Direction. This byte ©it7 bit 0
has three parts, as shown in the diagram to the right: | 0 | X | X | X | X | X | X | X |

e Bit 0 specifies the direction of the motor. Set |
this bit to 1 to make the motor go forward; clear S
the bit to make it go backward. bit 0: direction
1 = forward
e Bits 1-6 specify the motor number. All motor 0 = reverse
controllers respond to motor number 0 bits 1-6: motor
number
e Bit7mustbecleared since this is not a start byte.)
bit 7: always 0

To obtain the complete byte 3 value from a motor number and a direction, multiply the
motor number by 2 and add 1 if the direction is forward. For example, to make motor 5
go forward, byte three should be 5x2 + 1 =11. To make motor 1 go backward, byte 3
shouldbe 1 x2=2. (Two efficient ways to multiply by 2 in a microcontroller program
are shifting left by one digit or adding the motor number to itself.)

Byte 4: Motor Speed. The most significant bit must be zero since this is not a start
byte. The remaining seven bits specify the motor speed. The possible range of values
for byte 4 is thus 0x00 to 0x7F (0 to 127 decimal). 0x00 turns the motor off, and 0x7F
turns the motor fully on; intermediate values correspond to intermediate speeds. In
analog feedback mode, setting a speed of 0 in reverse will cause the motor controller to
hold position 0; setting a speed of 0 forward will cause the PID loop to be turned off.

Examples: (Using PBASIC “SEROUT” command with serial line on pin 5)

' “84” parameter sets up 9600 baud serial communication
SEROUT 5, 84,([$80,0,5,127] ‘motor 2 full on, forward

SEROUT 5, 84, [$80,0,5,0] ‘motor 2 off, forward (coasting)
SEROUT 5, 84, [$80,0,4,0] ‘motor 2 holding position 0
© 2006 8

Pololu http://www.pololu.com/

Controlling Multiple Motor Controllers with One Serial Line

To control a particular motor, you must specify its motor number in command byte 3.
Regardless of configuration, every motor controller responds to commands for motor
number 0. To control more than one motor with a single serial line, you need to use
motor numbers 1 through 63. Configure each motor controller to respond to different
motor numbers, then connect them to the same serial line; each motor controller will
respond only to the motor number to which it is configured. After you configure a
motor controller, you can write its motor number on a label to keep track of your motor
numbers.

Example BASIC Stamp II Program

The program on the next page, which can run on a BASIC Stamp II controller, makes
motor 0 gradually speed up, then slow down, then speed up in the other direction, and
then slow down again. For the code to work, pin 15 must be connected to the reset pin,
and pin 14 must be connected to the logic-level serial input. The interface code should
look similar in other programming languages; the description below should help you in
understanding the code and, if necessary, in translating it to other languages.

On line 1, the 8-bit variable speed is declared for later use. The serial line is then taken
high, to its idle state, before the motor controller is reset by a low-going pulse on pin 15
(lines 3 and 4). A 100-ms pause on line 5 ensures that the motor controller is up and
running before any serial data is sent to it.

The first for loop on lines 6-9 causes motor 0 to gradually speed up. The serial output is
created by the serout statement on line 7. The first parameter, 14, specifies the pin
number through which to send the serial signal. The next parameter, 84, sets up the
serial characteristics to be 8 bits with no parity, non-inverted, at a baud rate of 9600.
The four numbers in square brackets are the data to be sent, and they correspond to the
four control bytes for the motor controller. The first two bytes should always be $80
and 0. The second 0 makes motor 0 go backward. The speed variable, which increases
every time through the loop, is the only part of the command that changes, and that is
what makes the motor gradually speed up. The pause statement on line § causes the
program to wait for 20 ms (0.02 seconds) before sending the next command.

When the first loop ends, the motor is set to its full speed of 127. The second loop on
lines 10-13 slows the motor back down by sending speeds from 127 down to 0. The
next two loops on lines14-21 then repeat the process, except for the parameter value of
1 in byte three, which causes motor 0 to spin forward.

© 2006 9

Pololu http://www.pololu.com/

@ J oUW N

)
NP o

13
14
15
16
17
18
19
20
21

speed var Dbyte

high 14 ‘take serial line high

low 15 ‘reset motor controller

high 15

pause 100 ‘motor controller startup time

for speed =0 to 127
serout 14,84, [$80, 0, 0,speed]
pause 20

next

for speed =127 to 0
serout 14,84, [$80, 0, 0,speed]
pause 20

next

for speed =0 to 127
serout 14,84, [$80, 0, 1,speed]
pause 20

next

for speed =127 to 0
serout 14,84, [$80, 0, 1,speed]
pause 20

next

Troubleshooting Tips

All motor controllers are fully tested prior to shipment; if your motor controller does
not work at first, it can be difficult to determine the cause. Nevertheless, patience and
meticulous attention to detail, along with these few tips, should usually help you
through.

Pololu

Double check all of your connections. Are your logic and motor supply grounds
connected?

Double check your code. Are your baud rate settings correct? If you cannot get
your design working with the top baud rate of 60,000, try lowering it to 9600, where
slight timing mismatches are less likely to frustrate your efforts.

Are you using the correct motor number? If nothing seems to be working, start by
using motor number 0, which should work regardless of the configuration.

Setting the PID coefficients to certain values can cause unexpected results. If you
are in a feedback mode, check what you are setting the PID loop to do.

Keep wiring as short as possible. Keep the electrically noisy motor and power lines
away from other signals. See next page for additional information about dealing
with noise.

Are you using a good power supply? Make sure that your supply can deliver the
necessary current without big fluctuations in the voltage. A capacitor across the
power input pins can help.

© 2006 10
http://www.pololu.com/

Tips for Best Results
The user-configurable parameters mentioned below are listed at the end of this manual.
Limit noise.

In analog feedback mode, good measurements of position are critical to achieving good
results. Try to keep the analog signals away from the noisy motor wires, and keep all
wires as short as possible. The motor controller can average up to 64 samples each time
to get the best possible reading; however, taking more samples can also limit the PID
frequency.

The derivative term can be especially sensitive to noise. To reduce the effect of noise,
bit 6 of MISCPARAMO can be set to make the derivative calculation based on 5 sample
times instead of 1. This effectively increases the derivative term by a factor of 5 for
legitimate error changes without changing the effect of noise. Typically, turning on
this feature and reducing the derivative term coefficient by a factor of 5 improves
performance.

Power Considerations.

The motor driver on the SMC04B motor controller can deliver up to 30 A to the load.
However, the practical performance is limited by thermal issues, so the 30 A can appear
for only a short time before the motor controller overheats. Various tradeoffs of run-
time and current can be achieved, and mounting a heat sink to the motor driver can also
improve run time. Without a heat sink, the motor controller will typically begin to
overheat after a few minutes of running at 10 A. At 15 A, the motor controller will run
for about 30 seconds.

While the run time and current tradeoffs may be constrained by a particular installation,
limiting the worst-case current surges can make the difference between a successful
application and an overheated controller. The current that a motor draws can vary a
great deal depending on its load, and switching directions is the most demanding
operation for the motor and controller. To help manage the associated current spikes,
the ACCELLIMIT parameter allows the motor to gradually ramp up to a target speed.
Bit 6 of MISCPARAMI1 allows the maximum PWM duty cycle to be capped at 50%.
While this can limit the peak performance of a motor, it can also bring the load within
the limits of the motor controller.

Since switching directions is very demanding on a system, careful tuning of the PID
parameters can make a substantial difference. Eliminate oscillations in the output, and
you might very well eliminate any overheating problems.

© 2006 11

Pololu http://www.pololu.com/

High-Resolution Serial Interface

The four-byte serial protocol detailed on page 8 is designed to be compatible with the
Pololu dual serial motor controllers and the SMCO03 A motor controller with feedback.
The SMC04 module has expanded resolution for finer control of a motor, and to access
that resolution, a 5-byte protocol is available.

start byte = 0x80 | device type =3 | motor number | data byte 1 | data byte 2

The Five-Byte Motor Controller Command

Bytes 1 and 2: Start Byte and Device Type. The first two bytes must be 0x80 and
0x03 for high-resolution commands.

Byte 3: Motor Number. This is the motor number for which this command is issued.
All devices respond to motor number 0; unique numbers can be set to control multiple
controllers off of one serial line.

Byte 4: Data Byte 1. The first data byte has three parts, as

shown in the diagram to the right: bit 7 pit 0
e Bit 6 can be set to turn off PID and to instead brake at |O|X |X |_|_|X |X |X |
the target value. Braking is accomplished by tying
both motor outputs to ground. bItS 0-2: upper
3 bits of target
e Bit 5 applies to speed-feedback and no-feedback bit 5: direction
modes. A 1 sets a forward speed target; a 0 sets a 1 =fwd, 0 =rev
reverse speed target. This bit is ignored in analog- . ggtﬁt-)gsg%/jﬁ:?o%f)f
feedback mode. ’

e Bits 0-2 are the upper three bits of the 10-bit target bit7: always 0

value.

Byte 5: Data Byte 2. This byte has the lower 7 bits of the target value (bit 7 must be 0).

Diagnostic LEDs and Serial Output

Diagnostic LEDs. The motor controller includes three status LEDs. After initial
setup, the LEDs have consistent functions across all modes:

e Green LED: error small. This LED lights if the PID error is small. When the PID
function is turned off, this LED will always be on.

e Yellow LED: motor error. This LED lights if the motor driver overheats or
otherwise signals a fault condition.

e Red LED: maximum speed. This LED lights if the motor PWM duty cycle is close
to 100%.

© 2006 12

Pololu http://www.pololu.com/

Diagnostic LEDs and Serial Output (continued)

Serial Output. The motor controller sends two data bytes to the serial output pin for
every iteration through the PID calculation loop. The baud rate is the same as the input
baud rate in serial mode; for analog and RC inputs, the output rate is 38400 bits per
second.

Byte 1 Byte 2

MSB LSB MSB LSB
0| lower 7 bits of error 1| ERRB | ERRA | MAX | upper 4 bits of error

The serial data corresponds roughly to the LED values, but more detail is available. All
11 bits of the PID error calculation are sent out as a 2’s complement signed number.
The MAX bit is set if the PWM duty cycle is close to 100% (when the red LED is on).
The ERRAbit s set if the motor driver reports a problem on the A (positive output) side,
and the ERRB bit is set if the motor driver reports a problem on the B (negative output)
side. (The yellow LED thus corresponds to the logical ORing of the two bits.)

Using the Diagnostic Feedback

The LEDs or serial output can be used to determine the operation of the PID controller.
Typically, the error should be small, and the red LED should turn on only when there is
a big change in the target condition. If the error does not get smaller and the motor
speed is not at its maximum, the proportional or integral terms might need to be
increased. Ifthe error does not get smaller and the motor output is at its maximum for a
prolonged period of time, the desired target might not be attainable. Such a condition
could arise if the mechanism is jammed or if a target speed faster than the capability of
the mechanism is requested.

The serial output can be useful for run-time monitoring of the motor controller, or for
calibration of the PID parameters. For instance, a computer program could be written
to set the PID parameters, move to a new position, and record the error outputs. A graph
of the error could then be presented to the user for an objective measure of the
mechanism’s performance. The computer program could even iterate through
multiple PID parameter settings to automate the calibration of the PID parameters.

A separate pin above the reset line (see pinout on page 2) sends out a pulse every time
the PID calculation is executed. This pin can be used with a frequency counter to
measure the PID rate. The pulse is also synchronized with the serial output, so it can be
used as a trigger when looking at the serial output on an oscilloscope.

© 2006 13

Pololu http://www.pololu.com/

Configuring the Motor Controller

The motor controller has many parameters that can be configured to customize and
optimize the operation of the motor controller for many different installations. To
change any of these settings of the motor controller, send a four-byte command with the
following structure to the motor controller:

|s’ror’r byte = 0x80| config type = 0x02 | parameter address value

After each parameter change command, the motor controller stores the new parameter,
echoes back the value over the serial output, and then reinitializes the controller,
allowing the new parameter to take effect immediately. The parameters are stored in
non-volatile memory that can be rewritten thousands of times but not infinitely many
times. An automated setup that rewrites a parameter over and over could potentially
burn out the memory in a few minutes.

The configuration command is very similar to the usual speed setting command, but
byte 2 has a device type of ‘2’ instead of ‘0’. The next two bytes specify the parameter
that is to be set and the value for that parameter. The parameters and their functions are
listed below:

address name description
0 MOTORID motor number to which this motor controller responds
valid range is 0-63; default value s 1

1 ERRORMULT error (proportional) term multiplier
validrange is 0-127; default value is 0x19

2 ERRORDIV error (proportional) term divider
valid range is 0-7; default value is 1

3 INTEGMULT integral term multiplier
validrange is 0-127; default value is 0x0C

4 INTEGDIV integral term divider
valid range is 0-7; default value is 4

5 DERIVMULT derivative term multiplier
valid range is 0-127; default value is 0x 19

6 DERIVDIV derivative term divider
valid range is 0-7; default value is 1

7 PIDRATE sets the PID update rate (also affected by PWMFREQ)
valid range is 0-127; default value is 0x59 (~200 Hz)

© 2006 14

Pololu http://www.pololu.com/

Configuring the Motor Controller (continued)
address name description

8 MISCPARAMO bit 6 increases the derivative sample period if set
bit 5 enables power-up potentiometer test if set
bits 4-3 set the frequency feedback divider

frequency is divided by 2" <these two bits>
bit 2 inverts the analog feedback if set
bit 1 inverts the analog control input if set
bit 0 inverts the motor direction if set
validrange is 0-31, default value is 0

9 MISCPARAMI1 bit 6 limits the PWM output to 50% if set
bits 3-5 set the number of samples the analog input takes
bits 0-2 sethow many samples the analog feedback takes
Forboth inputs:
3-bitvalue = numberof samples

0 1
1 1
2 2
3 4
4 8
5 16
6 32
7 64

Default value is 0x3F (64 samples on both inputs, speed limit off)

10 INTEGLIMIT Limits the integral to
(<this parameter value>+1)x 8
defaultvalueis 7

11 UPPERLIMIT Inanalog feedback mode, do not allow target above
1023—(<this parameter value> * 4)
default valueis 13

12 LOWERLIMIT Inanalog feedback mode, do not allow target below
<this parameter value> * 4
defaultvalueis 13

13 ACCELLIMIT Eachtime through the PID loop, the motor speed cannot
be raised more than this value. IfACCELLIMIT is set to
0, this feature is turned off. Default value is 60.

14 PWMFREQ Sets PWM frequency. 0 for 20kHz, 1 for 5 kHz, 2 or 3 for
1.25kHz. Defaultvalueis 1.

© 2006 15

Pololu http://www.pololu.com/

The Pololu SMC04B High-Power Motor Controller with Feedback

The Pololu high-power motor controller with feedback simplifies servo control of
commonly available DC motors. The module features three independent interfaces: a
serial protocol for microcontroller-based applications, a pulse-width interface for
connection to hobby radio control equipment or serial servo controllers, and an analog
voltage interface for simple tests and demonstrations. Two feedback alternatives allow
for closed-loop control of position or speed.

The motor controller offers a complete feedback-based solution for applications
requiring bi-directional, closed-loop control of motor speed or motor position. You
can select either an analog voltage feedback or a digital encoder feedback (quadrature
encoding is not supported). Various simple devices such as potentiometers can be used
as sensors to achieve position or speed control.

In a typical application, a user first sets up the motor controller's parameters to suit the
mechanical system that is being driven. A feedback potentiometer is coupled to the
mechanism output, and the user can then send position commands to the motor
controller, which automatically drives the motor to reach the position. Alternatively,
the mechanism and sensor can be arranged to provide speed feedback, in which case the
motor controller maintains given speeds despite fluctuations in friction or supply
voltage.

The motor controller takes up less than 3 square inches and has an operating voltage of
6-16 volts, making the device well-suited for medium-sized robots and other projects
using DC motors and rechargeable 7.2 V to 12 V battery packs. The motor controller
serial protocol is compatible with other Pololu motion control devices, allowing
multiple units to be connected to a single serial line to control a mixture of motors sizes
and hobby RC servos.

Specifications
PCB sizZe....cccoooveviieieeieene. 2.475"x1.175"
Motor ports......ccovveveeeerniieeennn. 1
Motor speeds..........covueueueunnee. 1023 speeds forward, backward, brake
Motor Positions...........c..c....... 1024 (analog modes)
Maximum current................... 30A
Motor supply voltage............. 6-16V
PWM frequency.........cccueuneen. 1.25kHz, 5kHz, or20 kHz
Serial baud rate....................... 2000-60000 (automatically detected)
© 2006 16

Pololu http://www.pololu.com/

