
Micro Dual Serial
Motor Controller

User’s Guide

Contents:
Safety Warning
Contacting Pololu
Module Pinout
Connecting the Motor Controller
Using the Motor Controller
Example BASIC Stamp II Program
Description and Specifications

SMC02A
© 2002
http://www.pololu.com/

Pololu

Pololu
2

Important Safety Warning

The motor controller module is not intended for young children!
Younger users should use this module only under adult supervision.
By using this product, you agree not to hold Pololu liable for any
injury or damage related to the use or to the performance of this
product. This product is not designed for, and should not be used
in, applications where the malfunction of the product could cause
injury or damage.

!

© 2002
http://www.pololu.com/

Contacting Pololu

You can check the Pololu web site at http://www.pololu.com/ for the latest
information about the motor controller, including color pictures, application examples,
and troubleshooting tips.

We would be delighted to hear from you about your project and about your experience
with our motor controller. You can contact us through our online feedback form or by
email at support@pololu.com. Tell us what we did well, what we could improve,
what you would like to see in the future, or anything else you would like to say!

PIN FUNCTION
1
2
3
4

6
7
8

5

motor supply (1.8-9.0 V)
ground (0 V)
logic supply (3.0-5.5 V)
serial control input

motor 1, positive output

motor 0, positive output

motor 1, negative output
motor 0, negative output

9

reset

1 2 3 4 6 7 85 9

Module Pinout

The function of each of the nine module pins is listed in the table below. With the
module components facing you and the pins facing down, the pins are numbered left to
right.

3
Pololu

© 2002
http://www.pololu.com/

Connecting the Motor Controller

The motor controller module has pins with a standard 0.1 spacing. You can hook up
your motor controller with a solderless breadboard, by soldering wires directly onto the
pins, or even with your own custom printed circuit board. You can also use a socket to
allow you to plug your motor controller in without directly soldering it.

Connecting Power (pins 1-3). Connect the ground pin (pin 2) to a ground terminal on
your main controller unit, which might be a small microcontroller. Connect the
positive terminal of your motor power source to pin 1. Connect your logic power
supply to pin 3. The logic power supply is the voltage at which your main controller
operates, such as 5 V. You can connect the same power source to both logic and motor
supplies. For example, if you are using a microcontroller that can run at 4.5 V, you
could run both your logic and motors off of 3 1.5-volt batteries. Warning: make sure
the motor supply does not exceed 9 volts and the logic supply does not exceed 5.5 volts.

Reset Input (pin 5). The reset input is optional, but you

 C

"

may need to use it to ensure
that spurious signals sent when your main controller turns on do not cause the motor
controller to detect the baud rate incorrectly. onnect this pin to a digital output on
your main controller. The line should normally be kept high (at the logic supply
voltage), but bringing it low (to 0 V) for at least 2 microseconds resets the motor
controller to its initial state (all motors off, waiting for its first serial command).

Serial Input (pin 4). Use a pin on your main controller that can be used as a logic-
level, asynchronous serial output. Serial data can be sent down this line 8 bits at a time,
with no parity bit, at any rate between 1200 and 19200 baud. Once you choose a baud
rate, you cannot change it until the motor controller is reset. Important note: unlike
RS-232 serial lines (the standard for serial ports used to connect devices to personal
computers), this line uses logic voltages between 0 and the supply voltage. The higher
voltages used on RS-232 lines will damage the motor controller. If you need to convert
RS-232 levels to TTL levels, you will need to use a level converter such as the
MAX220 (made by Maxim). You could also use the simple circuit shown below.
When building circuits that connect to a PC, be especially careful because you
could potentially destroy the PC’s serial port. Before attempting to connect your
own electronics to a computer, make sure you know what you are doing!

to logic supply (pin 3)

to serial control input (pin 4)

to ground (pin 2)

3

2

1

9

6

2

7

8

4

5

DB9 serial
port connector

R2
10k

R1
4.7k

Q1
2N2222

4
Pololu

© 2002
http://www.pololu.com/

Connecting the Motors (pins 6-9). Connect one or two motors to the pins 6 through 9.
You probably don’t need to worry too much about the polarity, but the pins 6 and 9 go
positive when the controller receives “forward” commands. If you find out that your
motors turn in different directions than you expect, you can flip the wiring or just
switch the forward and reverse commands on your robot controller program.

 A typical setup is shown in the diagram below. The green box labeled “robot
controller” represents a main control unit that includes a battery that is not
shown. This robot controller could be a microcontroller or a device such as the
BASIC Stamp from Parallax. Keep in mind that the wiring you use for the
motor outputs and power connections should be capable of conducting several
amps. We recommend using at least 26 gauge wire (remember, smaller
numbers mean bigger wires!).

MOTOR
BATTERY

G
N

D

O
U

T1
O

U
T2

ROBOT
CONTROLLER

OUT1: CONTROL
OUT2: RESET

V
c

c

5
Pololu

© 2002
http://www.pololu.com/

start byte = 0x80 device type = 0x00 motor # and direction motor speed

Using the Motor Controller

To set the speed and direction of a motor, send a four-byte command with the following
structure to the motor controller’s asynchronous serial input, pin 4.

You must send the four-byte command eight bits at a time (with no parity bit) at a
constant baud rate ranging from 1200 to 19200 baud. The serial bits must be non-
inverted, meaning that a zero is sent as a low
voltage, and a one is sent as a high voltage, as shown
in the diagram to the right. (The PC-connection
circuit on the previous page corrects the inverted
signal coming out of PC serial ports.) Commands
sent to the serial input must conform to the above
format (described in detail below) or else the motor
controller and other devices connected to the serial
line may behave unexpectedly. This motor controller interface protocol is compatible
with other Pololu serial devices such as our servo controller, so you can control
multiple Pololu serial devices on a single line.

The Four-Byte Motor Controller Command
Byte 1: Start Byte. This byte should always be 0x80 (128 in decimal) to signify the
beginning of a command. The start byte is the only byte with the highest bit (bit 7) set,
and it alerts all devices on the serial line that a new command is being issued. All
succeeding bytes sent down the serial line must have their highest bit cleared to zero.

Byte 2: Device Type. This byte identifies the device type for which the command is
intended, and it should be 0x00 for commands sent to motor controllers. All devices
that are not dual motor controllers ignore all subsequent bytes until another start byte is
sent.

Byte 3: Motor Number and Direction. This byte
has three parts, as shown in the diagram to the right:

" Bit 0 specifies the direction of the motor. Set
this bit to 1 to make the motor go forward; clear
the bit to make it go backward.

" Bits 1-6 specify the motor number. If you are
using only two motors per serial line, you can
use the default values of 0 for motor M1 and 1 for
motor M2. If you want to control more than two
motors, use numbers in the range of 2 to 63, as
described in the section, “Controlling Multiple Motor Controllers with One Serial
Line”.

bit 0: direction
 1 = forward
 0 = reverse

bit 7 bit 0

0 x x x x x x x

bits 1-6: motor
number

bit 7: always 0

10011010

start bit stop bit

5V

0V

LSB MSB

6
Pololu

© 2002
http://www.pololu.com/

Byte 3: Motor Number and Direction (continued).

" Bit 7 must be cleared since this is not a start byte.

To obtain the complete byte 3 value from a motor number and a direction, multiply the
motor number by 2 and add 1 if the direction is forward. For example, to make motor 5
go forward, byte three should be 5 x 2 + 1 = 11. To make motor 1 go backward, byte 3
should be 1 x 2 = 2. (Two efficient ways to multiply by 2 in a microcontroller program
are shifting left by one digit or adding the motor number to itself.)

Byte 4: Motor Speed. The most significant bit must be zero since this is not a start
byte. The remaining seven bits specify the motor speed. The possible range of values
for byte 4 is thus 0x00 to 0x7F (0 to 127 decimal). 0x00 turns the motor off, and 0x7F
turns the motor fully on; intermediate values correspond to intermediate speeds.

Resetting the Motor Controller
The motor controller’s optional reset line should normally be kept high at the logic
supply voltage. Pull the reset line low to 0 V for at least 2 microseconds to reset the
motor controller to its initial state (all motors off, waiting for the first serial command).
You do not need to reset the motor controller to use it successfully. However, you may
need to reset the motor controller to ensure that spurious signals sent when your robot
controller turns on do not cause the motor controller to detect the baud rate incorrectly.

Controlling Multiple Motor Controllers with One Serial Line
To control a particular motor, you must specify its motor number in command byte 3.
For all motor controller boards, motor 0 (pins 8 and 9) responds to commands for motor
number 0, and motor 1 (pins 6 and 7) responds to commands for motor number 1. To
control more than two motors with a single serial line, you need to use motor numbers 2
through 63. The back of your motor controller module has a label that ends in ‘-x’,
where x specifies the motor numbers to which your module will respond. When the
label ends in ‘-1’, the motor controller responds to numbers 2 and 3, when the label ends
in ‘-2’, the motor controller responds to numbers 4 and 5, and so on. Motor controllers
that are not specially ordered typically respond to numbers 2 and 3; you need to order
specially programmed motor controllers to use motor numbers 4 through 63.

For example, to control six motors independently, you need three motor controller
boards, each with different motor numbers. All three motor controllers respond to
commands for motor numbers 0 and 1. For controlling the six motors independently,
use motor numbers 2, 3, 4, 5, 6, and 7. (The exact numbers depend on which motor
numbers you request when you specially order additional motor controllers.)

You can individually control up to 62 motors at a time with a single serial line using 31
motor controllers: one with the default program and 30 that are specially programmed.

7
Pololu

© 2002
http://www.pololu.com/

Example BASIC Stamp II Program

This program, which can run on a BASIC Stamp II controller, makes motor 1 gradually
speed up, then slow down, then speed up in the other direction, and then slow down
again. For the code to work, pin 15 must be connected to the reset input (pin 5), and pin
14 must be connected to the serial input (pin 2). The interface code should look similar
in other programming languages; the description below should help you in
understanding the code and, if necessary, in translating it to other languages.

On line 1, the 8-bit variable speed is declared for later use. The motor controller is
then reset by a low-going pulse on pin 15 (lines 2 and 3).

The first for loop on lines 4-7 causes motor 1 to gradually speed up. The serial output is
created by the serout statement on line 5. The first parameter, 14, specifies the pin
number through which to send the serial signal. The next parameter, 32, sets up the
serial characteristics to be 8 bits with no parity, non-inverted, at a baud rate of 19200.
The four numbers in square brackets are the data to be sent, and they correspond to the
four control bytes for the motor controller. The first two bytes should always be $80
and 0. The second 0 makes motor 1 go backward. The speed variable, which increases
every time through the loop, is the only part of the command that changes, and that is
what makes the motor gradually speed up. The pause statement on line 6 causes the
program to wait for 20 ms (0.02 seconds) before sending the next command.

When the first loop ends, the motor is set to its full speed of 127. The second loop on
lines 8-11 slows the motor back down by sending speeds from 127 down to 0. The next
two loops on lines12-19 then repeat the process, except for the parameter value of 1 in
byte three, which causes motor 1 to spin forward.

1 speed var byte
2 low 15 'reset motor controller
3 high 15
4 for speed = 0 to 127
5 serout 14,32,[$80, 0, 0,speed]
6 pause 20
7 next
8 for speed = 127 to 0
9 serout 14,32,[$80, 0, 0,speed]
10 pause 20
11 next
12 for speed = 0 to 127
13 serout 14,32,[$80, 0, 1,speed]
14 pause 20
15 next
16 for speed = 127 to 0
17 serout 14,32,[$80, 0, 1,speed]
18 pause 20
19 next

8
Pololu

© 2002
http://www.pololu.com/

The Pololu Micro Dual Serial Motor Controller

For a robot to interact with its environment, it must be able to convert
electrical signals into motion. However, the power requirements of
actuators, electrical devices capable of producing motion, are typically
so high that normal digital circuitry cannot drive them. In addition,
precise motion control requires constantly changing the signals sent to
the actuators, leaving the control circuitry with little time to attend to
other tasks.

The Pololu motor controller bridges the gap between robot controllers
and power-hungry actuators. Using one serial output from your robot
controller, you can independently set each of two small DC motors (the
kind typically found in remote-control cars and motorized toys) to go
forward or backward at any of 127 different speeds. To control
additional motors, you can connect multiple motor controllers to the
same serial line. The motor controller is compatible with the Pololu
Servo Controller, so you can control an almost unlimited number of
motors and servos with one serial line.

Because of its small size, the motor controller is especially suited for
small robots and mechanisms that use small motors that run at low
voltages. With this motor controller, you can make a robot that runs off
of just two 1.5 V batteries or three 1.2 V rechargeable cells!

Specifications

PCB size................................. 0.90" x 0.45
Motor ports............................. 2
Speeds.................................... 127 forward, 127 backward, and off
Maximum current................... 1 A per motor (continuous)
Motor supply voltage............. 1.8-9.0 V
Logic supply voltage............... 3.0-5.5 V
PWM frequency...................... 600 Hz
Serial baud rate....................... 1200-19200 (automatically detected)

”

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

