
Design a Line Maze Solving Robot

Teaching a Robot to Solve a Line Maze

By

Richard T. Vannoy II

April 2009

RoboticsProfessor@gmail.com

Please email me at the address above if you have

questions or comments.

mailto:RoboticsProfessor@gmail.com

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
2

What is a Line Maze?
A line maze is usually a black line on a white

background. It could also be a white line on a

black background, but for this presentation black

lines on a white background will be used.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
3

What is a Line Maze?
Each line maze has a Start point and a Finish

point. The robot is expected to follow the
lines and find it‟s way from Start to Finish in
the fastest time possible.

Start

Finish

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
4

What is a Line Maze?
The actual course can be fairly simple, as the

maze on the left, or it can get very

complicated.

Start
Finish

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
5

What is a Line Maze?
The course on the right was designed with

several long straight paths to give an

advantage to a robot that knows when it

can increase speed.

Start

Finish

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
6

What is a Line Maze?
Notice that there are a number of dead-end

paths in the maze. The robot typically

cannot traverse the maze without first

taking a number of wrong turns.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
7

Solving a Line Maze
This slide show will walk a robot hobbyist

through the logic and procedure a robot
needs to solve a line maze such as the one
shown here.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
8

Left Hand Rule

For this presentation, the robot will always

use the left hand rule, which means:

1. Always prefer a left turn over going

straight ahead or taking a right turn.

2. Always prefer going straight over going

right.

If the maze has no loops, this will always get

you to the end of the maze.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
9

Right Hand Rule

The right hand rule is just the opposite:

1. Always prefer a right turn over going

straight ahead or taking a left turn.

2. Always prefer going straight over going

left.

If the maze has no loops, this will always get

you to the end of the maze.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
10

Which Rule Do I Use???

It really doesn‟t matter.

Both the left hand and the right hand rules

will get you to the end of a simple maze.

Which you select is purely a matter of

personal preference.

Just pick one and be consistant.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
11

Simple Maze

In the two mazes below, notice that:

1. The left hand maze has no loops. Using

the left hand (or right hand) rule will

always get you to the end of the maze.

2. The right hand maze has several loops.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
12

Simple Maze

Notice the loops in the right hand maze.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
13

Simple Maze

Notice the loops in the right hand maze.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
14

Simple Maze

Notice the loops in the right hand maze.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
15

Simple Mazes Only

At the present time, this presentation does not

address how to solve the maze below. This

algorithm may be added at a future date.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
16

The 8 Possiblities
Given a maze with no loops, there are only 8

possible situations that the robot can

encounter.

We‟ll come

back to this

in future

slides.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
17

Line Sensors
• Line sensors can have a number of

configurations.

• This link Parallax.com has a great article

using four sensors to solve a line maze.

• This presentation will assume a robot with

five infrared sensors like those shown here.

http://forums.parallax.com/forums/default.aspx?f=6&m=341331

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
18

Line Sensors Use
Line sensors shine visible or infrared

light down at the floor and the measure
the reflection

Using a 1 to mean “Sensor sees black.”
and 0 to mean “Sensor sees white.”, a
robot travelling along the black line to
the right might produce several
patterns:

1 0 0 0 0 = Line off to left

0 1 0 0 0 = Line a little to left

0 0 1 0 0 = Dead center!

0 0 0 1 0 = Line a little to right

0 0 0 0 1 = Line off to right

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
19

Line Sensors Spacing
Notice that if the robot is travelling

downward on the black line to the right,
when it reaches the “T” intersection at
the bottom, the pattern will change
from 00100 to 11111.

The program reads

these patterns to determine

where it is in the maze.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
20

Line Sensors Spacing
If the sensors are spaced closer together so

that two sensors can detect the line at the
same time, there are many more
combinations and you can have more precise
control over your robot‟s path.

Possible patterns:

1 0 0 0 0

1 1 0 0 0

0 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 1 1

0 0 0 0 1

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
21

Five Sensors Closely Spaced

• This project will use five closely spaced

sensors.

• These sensors will look directly down on

the track and then be read by the program

to determine the correct next action.

• Next, let‟s see how these sensors can

detect the line and intersections.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
22

How Many Combinations?

• With five sensors that can each be a one or

a zero, there are 25 or 32 possible

combinations. We will be walking through

many of these, but also be aware some of

these are impossible or highly unlikely in

the mazes described here. For example,

you would not expect to see these

particular combinations in a line maze:

1 0 1 0 1 or 1 1 0 1 1 or 1 0 0 1 1

…and a few others.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
23

How Many Behaviors?

The robot, most of the time, will be involved in one

of the following behaviors:

1. Following the line, looking for the next

intersection.

2. At an intersection, deciding what type of

intersection it is.

3. At an intersection, making a turn.

These steps continue looping over and over until

the robot senses the end of the maze.

We will cover these in the next section.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
24

Follow the Line
Following the line is relatively easy. Here is

some pseudocode:

Select Case Pattern

Case Pattern = %00100 „ Full speed ahead

leftMotor=fast; rightMotor=fast

Case Pattern = %01100 „Go left a little

leftMotor=medium; rightMotor=fast

Case Pattern= %10000 „ Way off!

leftMotor=slow; rightMotor=medium

…and so on

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
25

Follow the Line
In the code on the previous slide:

leftMotor=fast; rightMotor=fast

leftMotor=medium; rightMotor=fast

leftMotor=slow; rightMotor=medium

Slow, medium and fast are arbitrary speeds

that should get the robot turning or

moving in the correct direction when

straying from the line.

Experiment with specific speeds until you get

smooth line tracking.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
26

Intersection and Turn Handling
The next few slides will walk through how the

robot handles coming to turns or

intersections.

The robot needs to be

taught the correct

behavior depending

on the type of turn or

intersection it

encounters.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
27

Intersection Handling
First, I need to give a more rigid definition of an

intersection. I will define an intersection as

“a place where the robot has more than one

choice of direction.”

From the illustration to the

right, you can see that in some

of the eight situations, there is

only one possible action.

This distinction needs to be

made because later some of

these will need to be stored by

the robot and some won‟t.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
28

Not Intersections!
In these two cases, the robot has no choice but

to make a 90 degree turn. Since the robot

will always make the same 90 degree turn

and it has no other option, this turn need not

be stored when solving the maze.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
29

Not Intersections!
In this case, the robot has no choice but to

make a 180 degree turn to exit the dead end.

Since reaching a dead-end means that the

robot has recently made a bad turn, we need to

store this fact so that a

previous turn can be

corrected. The robot

should not visit this

dead-end on the next

run.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
30

The Dead-End

• The Dead-End is the easiest intersection.

• Sensors will go from “00100” to “00000”.

• This is the only normal situation where the

robot should see all zeros.

If Pattern = %00000 then gosub U-Turn

The correct behavior at a dead-

end is to make a U-Turn. The

pseudocode for this would look

something like this:

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
31

“Right Only” or “Straight or Right”
• Here is a situation where the same pattern

will initially appear for two different

situations.

Both show the pattern “00111” when initially detected.

How do we know which is which?

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
32

Move Forward One Inch
• Create a subroutine called inch() that

moves the robot forward one inch.

• Now read the sensors again!

If the sensor pattern is now “00000”, then the robot

is at a “Right Turn Only”. With any other reading,

the robot is at the “Straight or Right” intersection.

00000 00100

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
33

“Left Only” or “Straight or Left”
• Here is a similar situation where the same

pattern will initially appear for two different

situations.

Both show the pattern “11100” when initially detected.

How do we know which is which?

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
34

Move Forward One Inch
• Call the subroutine inch() that moves the

robot forward one inch.

• Now read the sensors again!

If the sensor pattern is now “00000”, then the robot

is at a “Left Turn Only”. With any other reading, the

robot is at the “Straight or Left” intersection.

00000 00100

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
35

What About These??
• And ALL of the last three intersection types

will present an initial pattern of “11111” to

the robot.

• Once again, “inch()” will help us determine

the correct intersection.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
36

What About These??
Gosub inch()

ReadSensors()

If Pattern = “00000” then

„Found the T intersection

Elseif Pattern = “11111” then

„Found the end of the maze – STOP!

Else

„At a four-way intersection

Endif

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
37

The Main Algorithm

• In order to solve the maze, the robot needs

to traverse the maze twice.

• In the first run, it goes down some number

of dead-ends, but records these as “bad”

paths so that they can be avoided on the

second run.

• Next, we will learn how this algorithm

works.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
38

End Of

Maze

Start

First, we start with a very simple maze.

We will walk through this maze step-by-step to explain

the maze solving algorithm.

Path Stored in Memory: None

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
39

End Of

Maze

Start

So, we will use the left hand rule for the first pass

through the maze. There will be several dead-ends

encountered and we need to store what we did so the

correct path can be computed.

Path Stored in Memory: None

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
40

End Of

Maze

Start

The robot takes off! At the first intersection, the robot

senses a “Straight or Right” intersection. The left hand

rule requires that the robot go straight.

Path Stored in Memory: None

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
41

End Of

Maze

Start

The robot continues straight an stores the turn taken “S”

in memory.

Path Stored in Memory: S

S

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
42

End Of

Maze

Start

The robot runs off the path (Pattern = “00000”) and the

correct behavior is to take a U-Turn.

Path Stored in Memory: S

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
43

End Of

Maze

Start

After the U-Turn, record the turn taken “U” in memory.

Path Stored in Memory: SU

U

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
44

End Of

Maze

Start

Path Stored in Memory: SU

Let‟s stop here for a moment and discuss

an important point…

Dead Ends

• In this maze, every dead-end encountered

means that the robot has taken a wrong

turn!

• In any maze, the best/shortest path through

it never includes going down a dead-end

path.

• So a dead-end can always be said to tell

us: The previous action/turn was not

correct and needs to be changed.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
45

Dead Ends

• We can‟t be sure how we got here or the

correct way to modify the previous turn until

we return to the previous intersection.

• Let‟s continue with the example to develop

the algorithm…

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
46

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
47

End Of

Maze

Start

Path Stored in Memory: SU

When the robot gets back to the first

intersection, it will go left, so…

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
48

End Of

Maze

Start

Path Stored in Memory: SUL

The left hand rule calls for a left turn, so

take a left and record the turn.

L

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
49

End Of

Maze

Start

Path Stored in Memory: SUL

We recorded “SUL”, but we know (because

of the “U”) that we should have not gone

down that path.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
50

End Of

Maze

Start

Path Stored in Memory: SUL

What could the robot have done to avoid

going down the dead-end path? Instead of

“SUL”, the robot should have done “R”.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
51

End Of

Maze

Start

Path Stored in Memory: SUL

So, our first general rule is: Anywhere the

stored path ends with “Straight-U-Left” (SUL),

we replace it with “Right” (R).

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
52

End Of

Maze

Start

Path Stored in Memory: SUL

So, delete the “SUL” in memory..

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
53

End Of

Maze

Start

Path Stored in Memory: R

And replace “SUL” with “R”. This tells the

robot, next time through the maze, to take a

right turn at the first intersection.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
54

End Of

Maze

Start

Path Stored in Memory: R

The next intersection is a “Four-Way”

Intersection. The left hand rule requires a left

hand turn, so turn left and record an “L”.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
55

End Of

Maze

Start

Path Stored in Memory: RL

The intersection coming up, the “Right-Only”

has a special characteristic that needs

explaining, so we will detour for a bit…

L

I showed this graphic earlier and I call it the “Eight

Maze Possibilities”. I specifically avoided using

the term “Eight Maze Intersections”, because two

of them are not intersections.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
56

Not Intersections!!

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
57

NEW DEFINITION!

Intersection: A point in the maze

where the robot has more than

one choice of directions to

proceed.

Notice the new, restricted, definition of intersection above. What this

narrower definition does is REMOVE the “Left Turn Only”, “Right Turn

Only” and the “Dead-End” from the intersection list.

WHY?

Because the whole point of the maze algorithm is to eliminate bad

turns. These three “turns” have no choice, so a “bad” turn cannot be

made. Since the robot can never go any direction but one, there is not

even a need to record this turn in the maze path. So, in the maze,

these two will be treated as non-existent. The robot will take the

correct turn as indicated by the left hand rule, but will never record

either of these two turns.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
58

End Of

Maze

Start

Path Stored in Memory: RL

So, the robot will turn right and record

nothing in memory.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
59

End Of

Maze

Start

Path Stored in Memory: RL

Next, the robot will encounter a dead-end, do

a U-turn and record a “U”.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
60

End Of

Maze

Start

Path Stored in Memory: RLU

And we know from before, that the “U” tells

us we just made a bad turn and need to

return to the intersection we just came from.

U

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
61

End Of

Maze

Start

Path Stored in Memory: RLUL

Returning to the intersection, we see left turn

coming, so record the “L” and since we just

came down a bad path, examine the path.

L

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
62

End Of

Maze

Start

Path Stored in Memory: RLUL

So, the robot, getting from point A to point B

did “LUL” which we know to be bad. What

would the robot do next time to avoid this?

A B

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
63

End Of

Maze

Start

Path Stored in Memory: RLUL

Next time, we want to go straight, so we can

replace the “LUL” with “S” for Straight.

A B

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
64

End Of

Maze

Start

Path Stored in Memory: RS

We now have two “Replacement Rules”:

1. Replace “SUL” with “R”.

2. Replace “LUL” with “S”.

Replacement Rules

We will continue to develop these

“Replacement Rules” until we have covered

all of the maze possibilities we expect to

encounter.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
65

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
66

End Of

Maze

Start

Path Stored in Memory: RS

Once again, we are coming up on a dead-end, so we

know that a Replacement Rule is coming soon.

Do a 180 degree turn and record the “U”.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
67

End Of

Maze

Start

Path Stored in Memory: RSU

As we return to the intersection, we will take a left turn

and record it.

U

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
68

End Of

Maze

Start

Path Stored in Memory: RSUL

As we return to the intersection, we will take a left turn

and record it.

L

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
69

End Of

Maze

Start

Path Stored in Memory: RSUL

By now, you may be catching on to the answer to the

question? How do we know when it is time to invoke the

Replacement Rule?

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
70

End Of

Maze

Start

Path Stored in Memory: RSUL

How do we know when it is time to invoke the

Replacement Rule? - - - - Whenever the next to last

character in the stored path is a “U”!

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
71

End Of

Maze

Start

Path Stored in Memory: RSUL

We got here with “SUL”, so the correct path next time

will be to take a right turn, so replace “SUL” with “R”.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
72

End Of

Maze

Start

Path Stored in Memory: RR

As discussed previously, the left turn coming up is not

an intersection, since there is no choice, so take the left

and record nothing.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
73

End Of

Maze

Start

Path Stored in Memory: RR

Only one more turn! The intersection coming up is a

“Straight-Left” and the left hand rule will have the robot

turn left and record an “L”.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
74

End Of

Maze

Start

Path Stored in Memory: RRL

So, turn left and record an “L”.

L

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
75

End Of

Maze

Start

Path Stored in Memory: RRL

So, we reach the end of the maze with RRL in memory,

ready to take the next run.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
76

End Of

Maze

Start

Path Stored in Memory: RRL

On the next run, the “RRL” will properly guide the robot

to the finish using the shortest possible path.

Copyright 2009, Richard T. Vannoy II, All Rights Reserved
77

End Of

Maze

Start

Path Stored in Memory: RRL

TaDaaaaaa!

Now You Know

• I have not covered every possibility.

• This is a “Teach you how to fish” presentation -

• NOT a “Give you the fish” presentation.

• Have fun developing the source code for this

algorithm.

• Please contact me if you have any questions.

RoboticsProfessor@gmail.com

mailto:RoboticsProfessor@gmail.com

Line Maze Algorithm

Thank you for taking the time to review this
presentation!

Richard T. Vannoy II

April 2009

RoboticsProfessor@gmail.com

Please email me at the address above if you have
questions or comments.

mailto:RoboticsProfessor@gmail.com

