
March 2018 DocID031478 Rev 1 1/28

28

UM2356
User manual

VL53L1X API user manual

Introduction

The VL53L1X is a long distance ranging Time-of-Flight sensor.

The purpose of this user manual is to describe the set of functions to call to get ranging data
using the VL53L1X driver. Please refer to the VL53L1X datasheet.

Figure 1. VL53L1X ranging sensor module

www.st.com

http://www.st.com

Contents UM2356

2/28 DocID031478 Rev 1

Contents

1 VL53L1X system overview . 4

2 Ranging API function descriptions . 5

2.1 Autonomous ranging description . 5

2.2 Timing considerations . 5

2.3 API function call flows . 6

2.3.1 Calibration flow . 6

2.3.2 Ranging flow . 7

2.4 Mandatory ranging functions . 8

2.4.1 Data init . 8

2.4.2 Static Init . 8

2.4.3 Start a measurement . 8

2.4.4 Waiting for a result: polling or interrupt . 8

2.4.5 Get measurement . 8

2.4.6 Clear source of interrupt . 9

2.4.7 Stop a measurement . 9

2.5 Optional driver functions . 9

2.5.1 Wait for boot . 9

2.5.2 Timing budget and inter-measurement period . 9

2.5.3 Distance mode . 10

2.5.4 Limit check settings . 10

2.5.5 Thresholds . 12

2.5.6 Region of Interest (ROI) setting . 13

2.5.7 Spad array coordinates versus scene . 15

2.5.8 Optical center coordinates . 15

2.5.9 VDDIO configuration . 16

2.6 RangingMeasurementData structure . 16

3 Calibration functions . 18

3.1 RefSPAD calibration . 18

3.1.1 RefSPAD calibration function . 18

3.1.2 RefSPAD calibration procedure . 19

3.1.3 Getting RefSPAD calibration results . 19

3.1.4 Setting RefSPAD calibration data . 19

DocID031478 Rev 1 3/28

UM2356 Contents

28

3.2 Offset calibration . 20

3.2.1 Offset calibration function . 20

3.2.2 Offset calibration procedure . 20

3.2.3 Getting offset calibration results . 20

3.2.4 Setting offset calibration data . 20

3.3 Crosstalk calibration . 21

3.3.1 Cross talk calibration function . 21

3.3.2 Cross talk calibration procedure . 21

3.3.3 Crosstalk calibration distance characterization 21

3.3.4 Getting crosstalk calibration results . 22

3.3.5 Setting crosstalk calibration data . 22

3.3.6 Enable/Disable crosstalk compensation . 23

4 Driver errors and warnings . 24

5 Acronyms and abbreviations . 26

6 Revision history . 27

VL53L1X system overview UM2356

4/28 DocID031478 Rev 1

1 VL53L1X system overview

The VL53L1X system is composed of the VL53L1X module and a driver running on the
host.

Figure 2. VL53L1X system

ST delivers a software driver, referred to as the “driver” in this document.

This document describes the driver functions accessible to the host, to control the device
and get the ranging data.

The driver is an implementation of a set of functions for using the VL53L1X device. It makes
minimal assumptions on the OS integration and services. As such, sequencing of actions,
executing/threading model, platform adaptation, and device structure allocation are not part
of the driver implementation but are left open to the software integrator.

The sequencing of the function calls must follow a set of rules, defined in this document.

DocID031478 Rev 1 5/28

UM2356 Ranging API function descriptions

28

2 Ranging API function descriptions

This section give a functional description of the ranging and describes the API call flow that
should be followed to perform a ranging measurement using the VL53L1X.

2.1 Autonomous ranging description

The sensor performs the ranging continuously and autonomously with a programmable
inter-measurement period.

Ranging is done without involvement from the host which allows the host to be in a low-
power state. The host is only woken up upon measurement interrupts when a ranging is
available.

It is possible to set a threshold of distance and/or signal detection criteria, then an interrupt
is raised when the criteria is met.

2.2 Timing considerations

The timing budget is defined as the programmed time needed by the sensor to perform and
report ranging measurement data. During this time, the VCSEL is pulsed. An interrupt is
raised or the date ready register is updated at the end of the timing budget.

The inter-measurement period is defined as the programmed time between two consecutive
measurements.

Figure 3 shows the timing budget and inter-measurement period.

The host can change the default timing budget and inter-measurement period by using a
dedicated driver function described in Section 2.5.2: Timing budget and inter-measurement
period.

The host can decide to change the timing budget to improve ranging accuracy or maximum
distance limits.

Figure 3. VL53L1X autonomous ranging sequence and timings

Ranging API function descriptions UM2356

6/28 DocID031478 Rev 1

2.3 API function call flows

The VL53L1X driver is used in two use cases:

• Calibration flow for device calibration

• Ranging flow used at user applications level

2.3.1 Calibration flow

Calibration flow is described in Figure 4.

All API functions for calibration are described in Section 3: Calibration functions.

Figure 4. VL53L1X calibration flow

DocID031478 Rev 1 7/28

UM2356 Ranging API function descriptions

28

2.3.2 Ranging flow

Ranging flow is described in Figure 5.

Figure 5. VL53L1X ranging flow

Ranging API function descriptions UM2356

8/28 DocID031478 Rev 1

2.4 Mandatory ranging functions

The following sections shows the API functions required to perform system initialization,
before starting a measurement.

2.4.1 Data init

The VL53L1_DataInit() function is called once. It performs device initialization.

It is called once and only once after the device is brought out of reset.

2.4.2 Static Init

The VL53L1_StaticInit() function allows loading of the device settings that are
specific for a given use case.

2.4.3 Start a measurement

The VL53L1_StartMeasurement() function must be called to start a measurement.

2.4.4 Waiting for a result: polling or interrupt

There are three ways to know that ranging data are available:

1. The host can call a polling function to wait until ranging data are available,

The function VL53L1_WaitMeasurementDataReady() polls on the device interrupt
status until ranging data are ready.

This function blocks all other operations on the host as long as the function is not
completed, because an internal polling is performed.

2. The host can poll on a function to ask if the ranging data are available,

The host can poll on the function VL53L1_GetMeasurementDataReady() to know if new
ranging data are ready.

This function does not block other operations. It is the preferred and recommended method
if the sensor is used in polling mode.

3. The host can wait for a physical interrupt

An alternative and preferred way to get the ranging status is to use the physical interrupt
output: by default, GPIO1 is pulled down when new ranging data are ready.

This pin is an output pin only, there is no input interrupt pin on this device.

2.4.5 Get measurement

The Vl53L1_GetRangingMeasurementData() can be used to get ranging data.

When calling this function to get the device ranging results, a structure called
VL53L1_RangingMeasurementData_t is returned.

This structure is described in Section 2.6: RangingMeasurementData structure.

DocID031478 Rev 1 9/28

UM2356 Ranging API function descriptions

28

2.4.6 Clear source of interrupt

The interrupt must be cleared by calling the driver function:
VL53L1_ClearInterruptAndStartMeasurement()after reading the ranging data

To get consistent results, it is mandatory to call this function after getting the ranging
measurement.

If this function is not called, the next ranging will start and the results will be updated. But,
the data ready status flag will not be updated, and the physical interrupt pin will not be
cleared.

2.4.7 Stop a measurement

The host can decide to stop the measurement by calling the
VL53L1_StopMeasurement() function.

If the stop request occurs during a range measurement, then the measurement is aborted
immediately.

2.5 Optional driver functions

2.5.1 Wait for boot

The VL53L1_WaitDeviceBooted() function ensures that the device is booted and ready.

This function is optional. It is a blocking function because there is an internal polling. This
function should not be blocking for more than 4 ms, assuming 400 kHz I2C and 2 ms latency
per transaction.

2.5.2 Timing budget and inter-measurement period

Timing budget is the time required by the sensor to perform one range measurement.

The VL53L1_SetMeasurementTimingBudgetMicroSeconds() is the function to be
used.

The minimum and maximum timing budgets are [20 ms, 1000 ms]

Example:

Status = VL53L1_SetMeasurementTimingBudgetMicroSeconds(&VL53L1Dev,
66000); sets the timing budget to 66 ms.

The function VL53L1_GetMeasurementTimingBudgetMicroSeconds() gets the
programmed timing budget.

The inter-measurement period is the delay between two ranging operations.

An inter-measurement period can be programmed. When a ranging completes, the device
waits for the end of the programmed inter-measurement period before resuming the next
ranging. In the inter-measurement period, the sensor is in a low-power state.

The VL53L1_SetInterMeasurementPeriodMilliSeconds() is the function to be
used.

Ranging API function descriptions UM2356

10/28 DocID031478 Rev 1

Example:

Status = VL53L1_SetInterMeasurementPeriodMilliSeconds(&VL53L1Dev,
1000); sets the inter-measurement period to 1 s.

The function VL53L1_GetInterMeasurementPeriodMilliSeconds() gets the
programmed inter-measurement period.

Note: If the inter-measurement period is shorter than the timing budget, once the device
completes the ranging, the next ranging starts immediately.

Note: The timing budget and inter-measurement period should not be called when the sensor is
ranging. The user has to stop the ranging, change these parameters, and restart ranging.

2.5.3 Distance mode

Distance mode is a parameter provided to optimize the internal settings and tunings to get
the best ranging performances depending on the ranging distance required by the
application and the ambient light conditions.

The benefit of changing the distance mode is detailed in Table 1: Distance modes

The function to use is VL53L1_SetDistanceMode().

The user can call VL53L1_GetDistanceMode() to get the programmed distance mode.

2.5.4 Limit check settings

The driver uses two parameters to qualify the ranging measurement: signal and sigma.

If signal or sigma are outside the limits, the ranging is flagged as invalid (note that
RangeStatus is different than zero).

Applicable limits are:

• Sigma: VL53L1X_CHECKENABLE_SIGMA_FINAL_RANGE

Sigma is expressed in mm and is the estimation of the standard deviation of the
measurement.

• Signal: VL53L1X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE

The signal rate measurement, expressed in MCPS, represents the amplitude of the signal
reflected from the target and detected by the device.

Table 1. Distance modes

Possible distance modes Maximum distance Benefit / comments

Short Up to 1.3 m Better ambient immunity

Medium Up to 3 m

Long (default) Up to 4 m Maximum distance

DocID031478 Rev 1 11/28

UM2356 Ranging API function descriptions

28

Table 2 gives the default limit states and values.

If the user disables the limit checks, the ranging values will no longer be filtered and an
incorrect measurement could be returned by the sensor. In this case, RangeStatus 1 and 2
will never be reported.

Changing limit default settings should be done with care, as the side effects can be
important.

The limit change effects on the standard deviation and maximum ranging distances are
shown in Table 3.

VL53L1X_SetLimitCheckEnable() and VL53L1X_GetLimitCheckEnable() are
used to enable/disable a limit.

The limit value is set using VL53L1X_SetLimitCheckValue() and
VL53L1X_GetLimitCheckValue().

One example of the signal limit setting is to enable a signal check and set the limit to 0.4 MCps:

Status = VL53L1X_SetLimitCheckEnable(&VL53L1Dev,
VL53L1X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);

Status = VL53L1X_SetLimitCheckValue(&VL53L1Dev,
VL53L1X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 0.40*65536);

Table 2. Default limit states and values

Limit ID Default limit state Default limit value Associated RangeStatus

Sigma Enabled 15 mm 1

Signal Enabled 1 Mcps 2

Table 3. Signal and sigma limit change effects

Limit ID Action
Effect on

standard deviation
Effect on maximum

ranging distance

Sigma
Increase limit - +

Decrease limit + -

Signal
Increase limit + -

Decrease limit - +

Ranging API function descriptions UM2356

12/28 DocID031478 Rev 1

2.5.5 Thresholds

The device can be configured to operate in distance and/or signal threshold detection mode.
The ranging data is reported to the host when the pre-configured criteria are matched.

Detection mode

Detection mode allows selection of the filtering conditions:

• 0: no filter (default value, standard ranging mode)

• 1: filter on distance criteria only

Distance detection mode, based on thresholds:

Distance detection mode (through the CrossMode parameter) defines the distance criteria:

• 0: below a certain distance: "threshold low"

– If object distance > distance low or no object found: no report

– If object distance < distance low and object found: report

• 1: beyond a certain distance: "threshold high"

– If object distance < distance high or no object found: no report

– If object distance > distance high and object found: report

• 2: out of a distance range (min/max), "out of window"

– Distance low < detected distance < distance high: no report

– Distance low > detected distance > distance high: report

• 3: Within a distance range (min/max), "inside window"

– Distance low > detected distance > distance high: no report

– Distance low < detected distance < distance high: report

Distance low is the minimum configured distance in millimeters.

Distance high is the maximum configured distance in millimeters.

No target

This is an alternate detection mode. In the standard use case, if no target is detected, no
ranging is reported. Using no target detection mode (setting IntrNoTarget to 1) allows an
interrupt to be generated when no target is present.

API function

VL53L1_SetThresholdConfig() is the function to use.

The VL53L1_DetectionConfig_t structure contains all parameters to be set.

DocID031478 Rev 1 13/28

UM2356 Ranging API function descriptions

28

Example:

Detectionconfig.DetectionMode = 1

Detectionconfig.Distance.CrossMode = 3

Detectionconfig.IntrNoTarget = 0

Detectionconfig.Distance.High = 1000

Detectionconfig.Distance.Low = 100

Status = VL53L1_SetThresholdConfig(&VL53L1Dev, &detectionConfig);

This function is used to program the device to report ranging only when an object is
detected within 10 cm and 1 m (as in this example).

The function VL53L1_GetThresholdConfig() allows the programmed report threshold
configuration to be obatined.

2.5.6 Region of Interest (ROI) setting

The receiving SPAD array of the sensor includes 16x16 SPADs which cover the full field of
view (FoV). It is possible to program a smaller region of interest (ROI), with a smaller
number of SPADs, to reduce the FoV.

To set a ROI different than the default 16x16 one, the user can call the
VL53L1_SetUserROI() function.

The ROI is a square or rectangle defined by two corners: top left and bottom right.

Four coordinates are used to localize these two corners on the full SPAD array:

• TopLeftX

• TopLeftY

• BotRightX

• BotRightY

These coordinates are part of the VL53L1_UserRoi_t structure.

The user has to define the ROI coordinate values in the structure, and call the driver
function to apply the ROI change.

The minimum ROI size is 4x4.

An example of an ROI setting is given in Figure 6.

Ranging API function descriptions UM2356

14/28 DocID031478 Rev 1

Figure 6. VL53L1X ROI setting example

The VL53L1_UserRoi_t structure contains the coordinates of an ROI:

• TopLeftX: 8 bit integer that gives the top left x coordinate [0;15]

• TopLeftY: 8 bit integer that gives the top left y coordinate [0;15]

• BotRightX: 8 bit integer that gives the bottom right x coordinate [0;15]

• BotRightY: 8 bit integer that gives the bottom right x coordinate [0;15]

Example to set one ROI (based on Figure 6):
VL53L1_UserRoi_t roiConfig;
roiConfig.TopLeftX = 9;
roiConfig.TopLeftY = 13;
roiConfig.BotRightX = 14;
roiConfig.BotRightY = 10;
status = VL53L1_SetUserROI(&VL53L1Dev, &roiConfig);

DocID031478 Rev 1 15/28

UM2356 Ranging API function descriptions

28

2.5.7 Spad array coordinates versus scene

Figure 7 shows the coordinates of an object in the SPAD array compared to the location in
the FoV.

Figure 7. VL53L1X coordinates vs scene

2.5.8 Optical center coordinates

Due to assembly tolerances, the optical center of the device can vary. The optical center of
the device is measured for each part. The optical center coordinates are stored in the device
NVM.

The user has access to the optical center coordinates by calling:
VL53L1_GetCalibrationData(). The returned structure VL53L1_CalibrationData_t
contains a substructure VL53L1_optical_centre_t which contains the two coordinates
(expressed in the SPAD number):

• x_centre

• y_centre

The host can use these two coordinates to better align the ROI to the optical center.

Ranging API function descriptions UM2356

16/28 DocID031478 Rev 1

2.5.9 VDDIO configuration

As described in the datasheet, the user can select two modes for a VDDIO value of 1V8 or
2V8 modes.

The selection of the mode is made directly in the code though a compilation key called
USE_I2C_2V8k.

If this compilation key is defined, the system will go into 2V8 mode, otherwise, it will be kept
in the default 1V8 mode.

2.6 RangingMeasurementData structure

The VL53L1_RangingMeasurementData_t structure is composed of:

• TimeStamp: not implemented, please ignore it.

• StreamCount: this 8-bit integer counter increments at each range. The value starts at
0, increments to 255, and then increments from 128 to 255.

• RangingQualityLevel: not implemented, please ignore it.

• SignalRateRtnMegaCps: this value is the return signal rate in MegaCountPer Second
(MCPS). It is a 16.16 fix point value.To obtain a real value it should be divided by
65536.

• AmbientRateRtnMegaCps: this value is the return ambient rate (in MCPS). It is a
16.16 fix point value, which is effectively a measure of the infrared light. To obtain a real
value it should be divided by 65536.

• EffectiveSpadRtnCount: this 16 bit integer returns the effective SPAD count for the
current ranging. To obtain a real value it should be divided by 256.

• SigmaMilliMeter: this 16.16 fix point value is an estimation of the standard deviation of
the current ranging, expressed in millimeters. To obtain a real value it should be divided
by 65536.

• RangeMilliMeter: this 16 bit integer give the range distance in millimeters.

• RangeFractionalPart: not implemented, please ignore it.

• RangeStatus: this 8 bit integer gives the range status for the current measurement. A
value of 0 means the ranging is valid (refer to Table 4).

DocID031478 Rev 1 17/28

UM2356 Ranging API function descriptions

28

Table 4. Range status

 Value RangeStatus string Comment

0 VL53L1_RANGESTATUS_RANGE_VALID Ranging measurement is valid

1 VL53L1_RANGESTATUS_SIGMA_FAIL
Raised if sigma estimator check is above the
internal defined threshold

2 VL53L1_RANGESTATUS_SIGNAL_FAIL
Raised if signal value is below the internal
defined threshold

4
VL53L1_RANGESTATUS_OUTOFBOUNDS_

FAIL
Raised when phase is out of bounds

5 VL53L1_RANGESTATUS_HARDWARE_FAIL Raised in case of HW or VCSEL failure

7
VL53L1_RANGESTATUS_WRAP_TARGET_

FAIL
Wrapped target, not matching phases

8
VL53L1_RANGESTATUS_PROCESSING_

FAIL
Internal algorithm underflow or overflow

14 VL53L1_RANGESTATUS_RANGE_INVALID The reported range is invalid

Calibration functions UM2356

18/28 DocID031478 Rev 1

3 Calibration functions

To benefit from the full performance of the device, the VL53L1X driver includes calibration
functions that should be run once at the customer production line.

Calibration procedures have to be run to compensate the part-to-part parameters and the
presence of the cover glass that may affect the device performance.

Calibration data stored in the host have to be loaded into theVL53L1X at each startup using
a dedicated driver function.

Three calibrations are needed: RefSPAD, offset, and crosstalk.

The order the calibration functions are called is important: RefSPAD should be called first,
offset second, and crosstalk third.

The three calibration functions can be done sequentially one after another, or individually.
When run individually, the previous step data have to be loaded before running the current
calibration.

3.1 RefSPAD calibration

The number of SPADs is calibrated during the final module test at ST. This part-to-part value
is stored in the NVM and automatically loaded into the device during boot.

This calibration allows adjustment of the number of SPADs to optimize the device dynamic.

However, adding a cover glass on top of the module may affect this calibration. We
recommend that the customer performs this calibration again in the final product application.

The same algorithm running at FMT is applied when this function is called. The algorithm
searches through the three possible types of SPAD:

1. Non attenuated SPAD

2. SPAD attenuated by a factor of 5

3. SPAD attenuated by a factor of 10

The number and type of SPAD is selected to avoid internal signal saturation.

3.1.1 RefSPAD calibration function

A dedicated function is available for this operation:
VL53L1_PerformRefSpadManagement(&VL53L1Dev)

Note: This function must be called first in the calibration procedure.

DocID031478 Rev 1 19/28

UM2356 Calibration functions

28

3.1.2 RefSPAD calibration procedure

The user has to ensure that there are no targets closer than 5 cm from the sensor during the
calibration.

It is better to perform this calibration in low IR light conditions (indoor).

The time to perform this calibration is only few milliseconds.

The VL53L1_PerformRefSpadManagement function has to be called after the
VL53L1_DataInit() and VL53L1_StaticInit() functions are called. Refer to
Figure 4: VL53L1X calibration flow.

When the calibration function is called, the RefSPAD calibration is performed and the new
RefSPAD parameters are applied at the end.

3.1.3 Getting RefSPAD calibration results

The function VL53L1_GetCalibrationData() allows all calibration data to be obtained.
The returned structure VL53L1_CalibrationData_t also contains a substructure called
VL53L1_customer_nvm_managed_t which contains the eight RefSPAD calibration
parameters:

• ref_spad_man__num_requested_ref_spads: this value is between 5 and 44. It gives
the number of SPADs selected.

• ref_spad_man__ref_location: this value can be

– non attenuated SPAD

– SPAD attenuated by a factor of 5

– SPAD attenuated by a factor of 10

• Six additional parameters gives the good SPAD maps for the location selected.

After factory calibration, these calibration data have to be stored in the host memory and
loaded at each device start up to avoid redoing the calibration. Either the user stores the
entire structure VL53L1_CalibrationData_t or stores the eight parameters (to save memory
space).

3.1.4 Setting RefSPAD calibration data

At each start up, after a hard reset, the user can load the RefSPAD calibration data from the
host memory. The VL53L1_SetCalibrationData() has to be called after the
VL53L1_DataInit() and VL53L1_StaticInit() functions are called. Refer to
Figure 5: VL53L1X ranging flow

If the user has optimized the calibration data storage during the calibration, it is
recommended to get the entire calibration structure by calling
VL53L1_GetCalibrationData(), modifying the eight parameters described in
Section 3.1.3: Getting RefSPAD calibration results, and calling
VL53L1_SetCalibrationData().

Calibration functions UM2356

20/28 DocID031478 Rev 1

3.2 Offset calibration

Soldering the device on the customer board or adding a cover glass can introduce an offset
in the ranging distance. This part-to-part offset has to be measured and compensated
during the offset calibration.

3.2.1 Offset calibration function

A dedicated function is available for this operation:

VL53L1_PerformOffsetSimpleCalibration(&VL53L1Dev,
CalDistanceMilliMeter)

The argument of the function is the offset calibration distance in millimeters.

Note: Offset calibration has to be performed before crosstalk calibration and after RefSPAD
optimization is done (calibration done or RefSPAD parameters loaded).

3.2.2 Offset calibration procedure

The customer has to use a calibrated chart, placed at a given distance
(CalDistanceMilliMeter) to perform the offset calibration.

Details of the recommended setup are given in Table 5.

When the calibration function is called, the offset calibration is performed and the offset
correction is applied at the end.

3.2.3 Getting offset calibration results

The function VL53L1_GetCalibrationData() allows all calibration data to be obtained.
The returned structure VL53L1_CalibrationData_t also contains a substructure called
VL53L1_customer_nvm_managed_t which contains the main offset calibration result:
algo__part_to_part_range_offset_mm.

3.2.4 Setting offset calibration data

The customer can load the offset calibration data after the VL53L1_DataInit() and
VL53L1_StaticInit() functions are called, by using
VL53L1_SetCalibrationData().

However, it is better to call VL53L1_GetCalibrationData(), modify the parameter
described in Section 3.2.3: Getting offset calibration results
(algo__part_to_part_range_offset_mm) and call VL53L1_SetCalibrationData().

Table 5. Offset calibration set up

Chart
Chart distance

(CalDistanceMilliMeter)
Ambient conditions

Gray target
(17 % reflectance at 940 nm)

Recommended value: 140 mm
Dark

(no IR contribution)

DocID031478 Rev 1 21/28

UM2356 Calibration functions

28

3.3 Crosstalk calibration

Crosstalk (xtalk) is defined as the amount of the return signal received on the sensing array
which is due to VCSEL light reflection inside the protective window (cover glass) added on
top of the module for aesthetic and protective reasons.

Depending on the cover glass quality, the amount of the return signal can be significant and
can affect the sensor performance. The VL53L1X has a built-in correction that allows for this
crosstalk phenomenon to be compensated.

Crosstalk calibration is used to estimate the amount of correction needed to compensate
the effect of a cover glass added on top of the module.

3.3.1 Cross talk calibration function

A dedicated function is available for this operation:
VL53L1_PerformSingleTargetXTalkCalibration(&VL53L1Dev,
XtalkCalDistance);

One argument of the function is the crosstalk calibration distance in millimeters.

Note: This function must be called in third place in the calibration flow, after the offset
compensation is done (calibration done or offset parameters loaded).

3.3.2 Cross talk calibration procedure

The cross talk calibration should be conducted in a dark environment, with no IR
contribution.

When the calibration function is called, the crosstalk calibration is performed and the
crosstalk correction is applied at the end.

3.3.3 Crosstalk calibration distance characterization

The crosstalk calibration distance needs to be characterized by the user, as it depends on
the system environment, mainly the cover glass material and optical properties, and the air
gap value (distance between the sensor and the cover glass).

Figure 8: VL53L1X crosstalk calibration distance definition shows the crosstalk effect on the
ranging curve. From a given distance, the effect of the crosstalk is predominant, and the
sensor starts to under-range.

Table 6. Crosstalk calibration set up

Chart
Chart distance

(XtalkCalDistance)
Ambient conditions

Gray target
(17 % reflectance at 940 nm)

As defined in Section 3.3.3: Crosstalk
calibration distance characterization

Dark
(no IR contribution)

Calibration functions UM2356

22/28 DocID031478 Rev 1

Figure 8. VL53L1X crosstalk calibration distance definition

The crosstalk calibration distance corresponds to the maximum ranging distance achievable
reported by the sensor when the cover glass is present (see Figure 8).

This maximum ranging distance is one argument of the crosstalk calibration driver function.

The ranging curve with crosstalk corrected is the ranging result when the crosstalk
compensation is applied (when crosstalk calibration is completed or after crosstalk
calibration data are loaded).

3.3.4 Getting crosstalk calibration results

The function VL53L1_GetCalibrationData() allows all calibration data to be obtained.
The returned structure VL53L1_CalibrationData_t also contains a substructure called
VL53L1_customer_nvm_managed_t which contains the crosstalk calibration result:
algo__crosstalk_compensation_plane_offset_kcps.

3.3.5 Setting crosstalk calibration data

The customer can load the crosstalk calibration data after the VL53L1_DataInit() and
VL53L1_StaticInit() functions are called, by using
VL53L1_SetCalibrationData()

It is recommended to call VL53L1_GetCalibrationData(), modify the
algo__crosstalk_compensation_plane_offset_kcps parameter in the
VL53L1_customer_nvm_managed_t substructure, and then call
VL53L1_SetCalibrationData() to apply the crosstalk compensation.

DocID031478 Rev 1 23/28

UM2356 Calibration functions

28

3.3.6 Enable/Disable crosstalk compensation

The function to call to enable or disable the crosstalk compensation is:
VL53L1_SetXTalkCompensationEnable().

VL53L1_SetXTalkCompensationEnable(&VL53L1Dev, 0); // disables the crosstalk
compensation.

V53L1_SetXTalkCompensationEnable(&VL53L1Dev, 1); // enables the crosstalk
compensation.

Note: This function does not perform any crosstalk calibration or data loading, it just enables the
crosstalk compensation. It has to be called before starting ranging, with the optional function
calls.

Driver errors and warnings UM2356

24/28 DocID031478 Rev 1

4 Driver errors and warnings

The driver error is reported when any driver function is called. Possible values for driver
errors are described in Table 7.

Please note that warnings exist to inform the user that some parameters are not optimized.
The warnings are not blocking points for the host.

Table 7. Bare driver errors and warnings descriptions

 Error
value

API error string Occurrence

0 VL53L1_ERROR_NONE No error

-1 VL53L1_ERROR_CALIBRATION_WARNING Invalid calibration data

-4 VL53L1_ERROR_INVALID_PARAMS Invalid parameter is set in a function

-5 VL53L1_ERROR_NOT_SUPPORTED
Requested parameter is not supported in the
programmed configuration

-6 VL53L1_ERROR_RANGE_ERROR Interrupt status is incorrect

-7 VL53L1_ERROR_TIME_OUT Ranging is aborted due to timeout

-8 VL53L1_ERROR_MODE_NOT_SUPPORTED Requested mode is not supported

-10 VL53L1_ERROR_CALIBRATION_WARNING Supplied buffer is larger than I2C supports

-14 VL53L1_ERROR_INVALID_COMMAND Command is invalid in current mode

-16 VL53L1_ERROR_REF_SPAD_INIT An error occurred during reference SPAD calibration

-22 VL53L1_ERROR_XTALK_EXTRACTION_FAIL

Thrown when crosstalk calibration function has no
successful samples to compute the crosstalk. In this
case there is not enough information to generate new
crosstalk parameter information. The function will exit
and leave the current crosstalk parameters unaltered.

-23
VL53L1_ERROR_XTALK_EXTRACTION_SIGMA_
LIMIT_FAIL

Thrown when crosstalk calibration function has found
that the sigma estimate is above the maximal limit
allowed. In this case the crosstalk sample is too noisy
for measurement. The function will exit and leave the
current crosstalk parameters unaltered.

-24
VL53L1_ERROR_OFFSET_CAL_NO_SAMPLE_
FAIL

Thrown when offset calibration function has found no
valid ranging.

-28
VL53L1_WARNING_REF_SPAD_CHAR_NOT_
ENOUGH_SPADS

Thrown if there are less than five good SPADs
available. Ensure calibration setup is in line with ST
recommendations.

-29
VL53L1_WARNING_REF_SPAD_CHAR_RATE_
TOO_HIGH

Thrown if the final reference rate is greater than the
upper reference rate limit - default is 40 Mcps. Ensure
calibration setup is in line with ST recommendations.

-30
VL53L1_WARNING_REF_SPAD_CHAR_RATE_
TOO_LOW

Thrown if the final reference rate is less than the
lower reference rate limit - default is 10 Mcps. Ensure
calibration setup is in line with ST recommendations.

DocID031478 Rev 1 25/28

UM2356 Driver errors and warnings

28

-31
VL53L1_WARNING_OFFSET_CAL_MISSING_
SAMPLES

Thrown if there is less than the requested number of
valid samples. Ensure offset calibration setup is in line
with ST recommendations.

-32
VL53L1_WARNING_OFFSET_CAL_SIGMA_
TOO_HIGH

Thrown if the offset calibration range sigma estimate
is too high. Ensure offset calibration setup is in line
with ST recommendations.

-33
VL53L1_WARNING_OFFSET_CAL_RATE_
TOO_HIGH

Thrown when signal rate is greater than a limit and
sensor is saturating. Ensure offset calibration setup is
in line with ST recommendations.

-34
VL53L1_WARNING_OFFSET_CAL_SPAD_
COUNT_TOO_LOW

Thrown when not enough SPADS can be used.
Ensure offset calibration setup is in line with ST
recommendations.

-41 VL53L1_ERROR_NOT_IMPLEMENTED Function called is not implemented

Table 7. Bare driver errors and warnings descriptions (continued)

 Error
value

API error string Occurrence

Acronyms and abbreviations UM2356

26/28 DocID031478 Rev 1

5 Acronyms and abbreviations

Table 8. Acronyms and abbreviations

Acronym/ abbreviation Definition

I2C Inter-integrated circuit (serial bus)

NVM Non volatile memory

SPAD Single photon avalanche diode

VCSEL Vertical cavity surface emitting laser

FMT Final Module Test

API Application Programming Interface

DocID031478 Rev 1 27/28

UM2356 Revision history

28

6 Revision history

Table 9. Document revision history

Date Revision Changes

07-Mar-2018 1 Initial release

UM2356

28/28 DocID031478 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	Figure 1. VL53L1X ranging sensor module
	1 VL53L1X system overview
	Figure 2. VL53L1X system

	2 Ranging API function descriptions
	2.1 Autonomous ranging description
	2.2 Timing considerations
	Figure 3. VL53L1X autonomous ranging sequence and timings

	2.3 API function call flows
	2.3.1 Calibration flow
	Figure 4. VL53L1X calibration flow

	2.3.2 Ranging flow
	Figure 5. VL53L1X ranging flow

	2.4 Mandatory ranging functions
	2.4.1 Data init
	2.4.2 Static Init
	2.4.3 Start a measurement
	2.4.4 Waiting for a result: polling or interrupt
	2.4.5 Get measurement
	2.4.6 Clear source of interrupt
	2.4.7 Stop a measurement

	2.5 Optional driver functions
	2.5.1 Wait for boot
	2.5.2 Timing budget and inter-measurement period
	2.5.3 Distance mode
	Table 1. Distance modes

	2.5.4 Limit check settings
	Table 2. Default limit states and values
	Table 3. Signal and sigma limit change effects

	2.5.5 Thresholds
	2.5.6 Region of Interest (ROI) setting
	Figure 6. VL53L1X ROI setting example

	2.5.7 Spad array coordinates versus scene
	Figure 7. VL53L1X coordinates vs scene

	2.5.8 Optical center coordinates
	2.5.9 VDDIO configuration

	2.6 RangingMeasurementData structure
	Table 4. Range status

	3 Calibration functions
	3.1 RefSPAD calibration
	3.1.1 RefSPAD calibration function
	3.1.2 RefSPAD calibration procedure
	3.1.3 Getting RefSPAD calibration results
	3.1.4 Setting RefSPAD calibration data

	3.2 Offset calibration
	3.2.1 Offset calibration function
	3.2.2 Offset calibration procedure
	Table 5. Offset calibration set up

	3.2.3 Getting offset calibration results
	3.2.4 Setting offset calibration data

	3.3 Crosstalk calibration
	3.3.1 Cross talk calibration function
	3.3.2 Cross talk calibration procedure
	Table 6. Crosstalk calibration set up

	3.3.3 Crosstalk calibration distance characterization
	Figure 8. VL53L1X crosstalk calibration distance definition

	3.3.4 Getting crosstalk calibration results
	3.3.5 Setting crosstalk calibration data
	3.3.6 Enable/Disable crosstalk compensation

	4 Driver errors and warnings
	Table 7. Bare driver errors and warnings descriptions

	5 Acronyms and abbreviations
	Table 8. Acronyms and abbreviations

	6 Revision history
	Table 9. Document revision history

