Introduction

This document is intended to provide usage information and application hints related to ST’s LSM6DS33 iNEMO inertial module.

The LSM6DS33 is a 3D digital accelerometer and 3D digital gyroscope system-in-package with a digital I²C/SPI serial interface standard output, performing at 0.9 mA in combo Normal mode and 1.25 mA (up to 1.6 kHz) in combo High-Performance mode. Thanks to the ultra-low noise performance of both the gyroscope and the accelerometer, the device combines always-on low-power features with superior sensing precision for an optimal motion experience for the consumer. Furthermore, the accelerometer features smart sleep-to-wake-up (Activity) and return-to-sleep (Inactivity) functions that allow advanced power saving.

The device has a dynamic user-selectable full-scale acceleration range of ±2/±4/±8/±16 g and an angular rate range of ±125/±245/±500/±1000/±2000 dps.

The LSM6DS33 can be configured to generate interrupt signals by using hardware recognition of free-fall events, 6D orientation, tap and double-tap sensing, activity or inactivity, wake-up events.

The LSM6DS33 is compatible with the requirements of Android KitKat, Android L and the leading OSs, offering real, virtual and batch-mode sensors. It has been designed to implement in hardware significant motion, tilt, pedometer functions and time stamp.

The LSM6DS33 has an integrated smart first-in first-out (FIFO) buffer of up to 8 kbyte size, allowing dynamic batching of significant data (i.e. sensors, step counter, time stamp and temperature).

The LSM6DS33 is available in a small plastic land grid array package (LGA-16L) and it is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

The ultra-small size and weight of the SMD package make it an ideal choice for handheld portable applications such as smartphones, IoT connected devices, and wearables or any other application where reduced package size and weight are required.
Content

1 Registers ... 8
 1.1 Embedded functions registers 11

2 Operating modes ... 12
 2.1 Power-Down mode .. 14
 2.2 High-Performance mode .. 14
 2.3 Normal mode ... 14
 2.4 Low-Power mode .. 14
 2.5 Gyroscope Sleep mode ... 14
 2.6 Accelerometer bandwidth 15
 2.6.1 Accelerometer slope filter 18
 2.6.2 Accelerometer turn-on/off time 19
 2.7 Gyroscope bandwidth .. 20
 2.7.1 Gyroscope turn-on/off time 22

3 Reading output data .. 23
 3.1 Startup sequence .. 23
 3.2 Using the status register 23
 3.3 Using the data-ready signal 24
 3.4 Using the block data update (BDU) feature 24
 3.5 Understanding output data 25
 3.5.1 Big-little endian selection 25
 3.5.2 Examples of output data 25
 3.6 Rounding functions .. 27
 3.6.1 Rounding of FIFO output registers 27
 3.6.2 Rounding of source registers 27
 3.6.3 Rounding of sensor output registers 27
 3.7 Gyroscope edge-sensitive/level-sensitive/impulse-sensitive data enable (DEN) 28
 3.7.1 Edge-sensitive trigger 28
 3.7.2 Level-sensitive trigger stamping 29
 3.7.3 Impulse-sensitive trigger stamping 29
 3.8 Gyroscope axes orientation 29
4 Interrupt generation .. 31
 4.1 Interrupt pin configuration 31
 4.2 Free-fall interrupt .. 33
 4.3 Wake-up interrupt ... 35
 4.4 6D/4D orientation detection 36
 4.4.1 6D orientation detection 36
 4.4.2 4D orientation detection 38
 4.5 Single-tap and double-tap recognition 38
 4.5.1 Single tap ... 39
 4.5.2 Double tap ... 39
 4.5.3 Single-tap and double-tap recognition configuration . 40
 4.5.4 Single-tap example 42
 4.5.5 Double-tap example 43
 4.6 Activity/Inactivity recognition 43
 4.7 Boot status .. 45

5 Android embedded functions 46
 5.1 Pedometer functions: step detector and step counter 46
 5.2 Significant motion ... 47
 5.3 Tilt ... 49
 5.4 Time stamp .. 50

6 First-in first-out (FIFO) buffer 51
 6.1 FIFO registers ... 52
 6.1.1 FIFO_CTRL1 (06h) 52
 6.1.2 FIFO_CTRL2 (07h) 52
 6.1.3 FIFO_CTRL3 (08h) 53
 6.1.4 FIFO_CTRL4 (09h) 54
 6.1.5 FIFO_CTRL5 (0Ah) 54
 6.1.6 FIFO_STATUS1 (3Ah) 56
 6.1.7 FIFO_STATUS2 (3Bh) 56
 6.1.8 FIFO_STATUS3 (3Ch) 57
 6.1.9 FIFO_STATUS4 (3Dh) 57
 6.1.10 FIFO_DATA_OUT_L (3Eh) 58
 6.1.11 FIFO_DATA_OUT_H (3Fh) 58
 6.2 FIFO modes .. 58
List of tables

Table 1. Registers .. 8
Table 2. Embedded functions registers 11
Table 3. Accelerometer ODR and power mode selection 12
Table 4. Gyroscope ODR and power mode selection 13
Table 5. Power consumption ... 13
Table 6. Accelerometer anti-aliasing filter bandwidth selection (XL_BW_SCAL_ODR=1) 15
Table 7. Accelerometer anti-aliasing bandwidth options (High-Performance mode) 15
Table 8. Accelerometer LPF1 cutoff frequency 16
Table 9. Accelerometer slope and high-pass filter selection and cutoff frequency 17
Table 10. Accelerometer LPF2 cutoff frequency 18
Table 11. Accelerometer turn-on/off time 19
Table 12. Accelerometer number of samples to be discarded (High-Perf. mode) 19
Table 13. Gyroscope digital low-pass filter cutoff in Low-Power / Normal mode 20
Table 14. Gyroscope digital low-pass filter cutoff in High-Performance mode 20
Table 15. Gyroscope high-pass filter cutoff frequency [Hz] 21
Table 16. Gyroscope turn-on/off time 22
Table 17. Gyroscope number of samples to be discarded 22
Table 18. Output data registers content vs. acceleration (FS_XL = 2 g) 26
Table 19. Output data registers content vs. angular rate (FS_G = 245 dps) 26
Table 20. Output registers rounding pattern 27
Table 21. DEN configurations .. 28
Table 22. ORIENT_CFG_G register .. 30
Table 23. Settings for gyroscope axes orientation 30
Table 24. INT1_CTRL register .. 32
Table 25. MD1_CFG register .. 32
Table 26. INT2_CTRL register .. 32
Table 27. MD2_CFG register .. 33
Table 28. Free-fall threshold LSB value 34
Table 29. D6D_SRC register ... 36
Table 30. Threshold for 4D/6D function 37
Table 31. D6D_SRC register in 6D positions 38
Table 32. TAP_SRC register .. 42
Table 33. FIFO_CTRL1 register .. 52
Table 34. FIFO_CTRL2 register .. 52
Table 35. FIFO_CTRL3 register .. 53
Table 36. Gyroscope FIFO decimation setting 53
Table 37. Accelerometer FIFO decimation setting 53
Table 38. FIFO_CTRL4 register .. 54
Table 39. 3rd FIFO data set decimation setting 54
Table 40. FIFO_CTRL5 register .. 55
Table 41. FIFO ODR selection setting 55
Table 42. FIFO mode selection .. 55
Table 43. FIFO_STATUS1 register .. 56
Table 44. FIFO_STATUS2 register .. 56
Table 45. FIFO_STATUS2 behavior ... 57
Table 46. FIFO_STATUS3 register .. 57
Table 47. FIFO_STATUS4 register .. 57
Table 48. FIFO_DATA_OUT_L register 58
Table 49. FIFO_DATA_OUT_H register. .. 58
Table 50. Example 1: FIFO_PATTERN_[9:0] bits and next reading. 67
Table 51. Example 2: FIFO_PATTERN_[9:0] bits and next reading. 68
Table 52. Example 3: FIFO_PATTERN_[9:0] bits and next reading. 69
Table 53. High part of gyroscope and accelerometer data in FIFO 71
Table 54. Time stamp and pedometer data in FIFO .. 72
Table 55. Temperature data in FIFO ... 73
Table 56. Output data registers content vs. temperature 75
Table 57. Document revision history. .. 79
List of figures

Figure 1. Accelerometer sampling chain diagram ... 15
Figure 2. Accelerometer composite digital filter ... 17
Figure 3. Accelerometer slope filter .. 18
Figure 4. Gyroscope sampling chain diagram .. 20
Figure 5. Gyroscope high-pass filter reset ... 21
Figure 6. Data-ready signal ... 24
Figure 7. Data synchronization: edge-sensitive ... 28
Figure 8. Data synchronization: level-sensitive ... 29
Figure 9. Gyroscope axes orientation and sign configuration 29
Figure 10. Gyroscope axes orientation and sign example .. 30
Figure 11. Free-fall interrupt .. 33
Figure 12. Wake-up interrupt (using the slope filter) ... 35
Figure 13. 6D recognized orientations .. 37
Figure 14. Single-tap event recognition .. 39
Figure 15. Double-tap event recognition (LIR bit = 0) ... 40
Figure 16. Single and double-tap recognition (LIR bit = 0) 41
Figure 17. Activity/Inactivity recognition .. 44
Figure 18. FIFO mode ... 60
Figure 19. Continuous mode ... 61
Figure 20. Continuous-to-FIFO mode .. 62
Figure 21. Bypass-to-Continuous mode .. 64
Figure 22. FIFO trigger signal selection .. 65
Figure 23. FIFO threshold (STOP_ON_FTH = 0) ... 70
Figure 24. FIFO threshold (STOP_ON_FTH = 1) in Continuous mode 71
Figure 25. Accelerometer self-test procedure .. 77
Figure 26. Gyroscope self-test procedure .. 78
Registers

Table 1. Registers

<table>
<thead>
<tr>
<th>Register name</th>
<th>Address</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNC_CFG_ACCESS</td>
<td>01h</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIFO_CTRL1</td>
<td>06h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO_CTRL2</td>
<td>07h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO_CTRL3</td>
<td>08h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO_CTRL4</td>
<td>09h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO_CTRL5</td>
<td>0Ah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIENT_CFG_G</td>
<td>0Bh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT1_CTRL</td>
<td>0Ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT2_CTRL</td>
<td>0Dh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO_AM_I</td>
<td>0Fh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_XL</td>
<td>10h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_G</td>
<td>11h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL3_C</td>
<td>12h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL4_C</td>
<td>13h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL5_C</td>
<td>14h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **FUNC_CFG_ACCESS**
 - **FUNCTIONALITY**, **CFG**
- **FIFO_CTRL1**
 - **FTH_7**, **FTH_6**, **FTH_5**, **FTH_4**, **FTH_3**, **FTH_2**, **FTH_1**, **FTH_0**
- **FIFO_CTRL2**
 - **TIMER_PEDO**
 - **FIFO_DRDY**
- **FIFO_CTRL3**
 - **DEC_FIFO**
- **FIFO_CTRL4**
 - **ONLY_HIGH**
 - **DATA**
 - **TIMER_PEDO**, **DEC_FIFO**
 - **TIMER_PEDO**, **DEC_FIFO**
 - **TIMER_PEDO**, **DEC_FIFO**
- **FIFO_CTRL5**
 - **ODR_FIFO**
 - **ODR_FIFO**
 - **ODR_FIFO**
 - **ODR_FIFO**
 - **FIFO_MODE**
 - **FIFO_MODE**
 - **FIFO_MODE**
- **ORIENT_CFG_G**
 - **SignX_G**, **SignY_G**, **SignZ_G**
 - **Orient_2**, **Orient_1**, **Orient_0**
- **INT1_CTRL**
 - **INT1_STEP**
 - **INT1_SIG**
 - **INT1_FULL**
 - **INT1_FIF0**
 - **INT1_FTH**
 - **INT1_BOOT**
 - **INT1_DRDY**
 - **INT1_DRDY**
- **INT2_CTRL**
 - **INT2_STEP**
 - **INT2_STEP**
 - **INT2_FIF0**
 - **INT2_FTH**
 - **INT2_DRDY**
 - **INT2_DRDY**
 - **INT2_DRDY**
- **WHO_AM_I**
 - **0**
- **CTRL1_XL**
 - **ODR_XL3**, **ODR_XL2**, **ODR_XL1**, **ODR_XL0**, **FS_XL1**, **FS_XL0**, **BW_XL1**, **BW_XL0**
- **CTRL2_G**
- **CTRL3_C**
 - **BOOT**, **H_LACTIVE**, **PP_OD**, **SIM**, **IF_INC**, **BLE**, **SW_RESET**
- **CTRL4_C**
 - **XL_BW_SCAL_ODR**, **SLEEP_G**, **INT2_on_INT1**, **FIFO TEMP»EN**, **DRDY»MASK**, **I2C disable**, **STOP_ON_FTH**
- **CTRL5_C**
 - **ROUNDING2**, **ROUNDING1**, **ROUNDING0**, **ST1_G**, **ST0_G**, **ST1_XL**, **ST0_XL**
Table 1. Registers (continued)

<table>
<thead>
<tr>
<th>Register name</th>
<th>Address</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL6_C</td>
<td>15h</td>
<td>TRIG_EN</td>
<td>LVLen</td>
<td>LVL2_EN</td>
<td>XL_HM _MODE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CTRL7_G</td>
<td>16h</td>
<td>G_HM_MODE</td>
<td>HP_G_EN</td>
<td>HPCF_G1</td>
<td>HPCF_G0</td>
<td>HP_G_RST</td>
<td>ROUNDELG _STATUS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CTRL8_XL</td>
<td>17h</td>
<td>LPF2_XL_EN</td>
<td>HPCF_XL1</td>
<td>HPCF_XL0</td>
<td>0</td>
<td>0</td>
<td>HP_SLOPE _XL_EN</td>
<td>0</td>
<td>LOW_PASS _ON_6D</td>
</tr>
<tr>
<td>CTRL9_XL</td>
<td>18h</td>
<td>0</td>
<td>0</td>
<td>Zen_XL</td>
<td>Yen_XL</td>
<td>Xen_XL</td>
<td>FF_IA</td>
<td>SLEEP _STATE_IA</td>
<td>WU_IA</td>
</tr>
<tr>
<td>CTRL10_C</td>
<td>19h</td>
<td>0</td>
<td>0</td>
<td>Zen_G</td>
<td>Yen_G</td>
<td>Xen_G</td>
<td>FUNC_EN</td>
<td>PEDO_RST _STEP</td>
<td>SIGN_MOTION _EN</td>
</tr>
<tr>
<td>WAKE_UP_SRC</td>
<td>1Bh</td>
<td>0</td>
<td>0</td>
<td>FF_IA</td>
<td>SLEEP _STATE_IA</td>
<td>WU_IA</td>
<td>X_WU</td>
<td>Y_WU</td>
<td>Z_WU</td>
</tr>
<tr>
<td>TAP_SRC</td>
<td>1Ch</td>
<td>0</td>
<td>TAP_IA</td>
<td>SINGLE _TAP</td>
<td>DOUBLE _TAP</td>
<td>TAP_SIGN</td>
<td>X_TAP</td>
<td>Y_TAP</td>
<td>Z_TAP</td>
</tr>
<tr>
<td>D6D_SRC</td>
<td>1Dh</td>
<td>0</td>
<td>D6D_IA</td>
<td>ZH</td>
<td>ZL</td>
<td>YH</td>
<td>YL</td>
<td>XL</td>
<td>XL</td>
</tr>
<tr>
<td>STATUS_REG</td>
<td>1Eh</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OUT_TEMP_L</td>
<td>20h</td>
<td>Temp7</td>
<td>Temp6</td>
<td>Temp5</td>
<td>Temp4</td>
<td>Temp3</td>
<td>Temp2</td>
<td>Temp1</td>
<td>Temp0</td>
</tr>
<tr>
<td>OUT_TEMP_H</td>
<td>21h</td>
<td>Temp15</td>
<td>Temp14</td>
<td>Temp13</td>
<td>Temp12</td>
<td>Temp11</td>
<td>Temp10</td>
<td>Temp9</td>
<td>Temp8</td>
</tr>
<tr>
<td>OUTX_L_G</td>
<td>22h</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>OUTX_H_G</td>
<td>23h</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>OUTY_L_G</td>
<td>24h</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>OUTY_H_G</td>
<td>25h</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>OUTZ_L_G</td>
<td>26h</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>OUTZ_H_G</td>
<td>27h</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>OUTX_L_XL</td>
<td>28h</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>OUTX_H_XL</td>
<td>29h</td>
<td>D15</td>
<td>D14</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>OUTY_L_XL</td>
<td>2Ah</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>Register name</td>
<td>Address</td>
<td>Bit7</td>
<td>Bit6</td>
<td>Bit5</td>
<td>Bit4</td>
<td>Bit3</td>
<td>Bit2</td>
<td>Bit1</td>
<td>Bit0</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>OUTY_H_XL</td>
<td>2Bh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTZ_L_XL</td>
<td>2Ch</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
<tr>
<td>OUTZ_H_XL</td>
<td>2Dh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO_STATUS1</td>
<td>3Ah</td>
<td>DIFF_FIFO_6</td>
<td>DIFF_FIFO_5</td>
<td>DIFF_FIFO_4</td>
<td>DIFF_FIFO_3</td>
<td>DIFF_FIFO_2</td>
<td>DIFF_FIFO_1</td>
<td>DIFF_FIFO_0</td>
<td></td>
</tr>
<tr>
<td>FIFO_STATUS2</td>
<td>3Bh</td>
<td>FTH</td>
<td>FIFO_OVER_RUN</td>
<td>FIFO_FULL</td>
<td>FIFO_EMPTY</td>
<td>DIFF_FIFO_11</td>
<td>DIFF_FIFO_10</td>
<td>DIFF_FIFO_9</td>
<td>DIFF_FIFO_8</td>
</tr>
<tr>
<td>FIFO_STATUS3</td>
<td>3Ch</td>
<td>FIFO_PATTERN_7</td>
<td>FIFO_PATTERN_6</td>
<td>FIFO_PATTERN_5</td>
<td>FIFO_PATTERN_4</td>
<td>FIFO_PATTERN_3</td>
<td>FIFO_PATTERN_2</td>
<td>FIFO_PATTERN_1</td>
<td>FIFO_PATTERN_0</td>
</tr>
<tr>
<td>FIFO_STATUS4</td>
<td>3Dh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFO_DATA_OUT_L</td>
<td>3Eh</td>
<td>DATA_OUT_FIFO_L_7</td>
<td>DATA_OUT_FIFO_L_6</td>
<td>DATA_OUT_FIFO_L_5</td>
<td>DATA_OUT_FIFO_L_4</td>
<td>DATA_OUT_FIFO_L_3</td>
<td>DATA_OUT_FIFO_L_2</td>
<td>DATA_OUT_FIFO_L_1</td>
<td>DATA_OUT_FIFO_L_0</td>
</tr>
<tr>
<td>FIFO_DATA_OUT_H</td>
<td>3Fh</td>
<td>DATA_OUT_FIFO_H_7</td>
<td>DATA_OUT_FIFO_H_6</td>
<td>DATA_OUT_FIFO_H_5</td>
<td>DATA_OUT_FIFO_H_4</td>
<td>DATA_OUT_FIFO_H_3</td>
<td>DATA_OUT_FIFO_H_2</td>
<td>DATA_OUT_FIFO_H_1</td>
<td>DATA_OUT_FIFO_H_0</td>
</tr>
<tr>
<td>TIMESTAMP0_REG</td>
<td>40h</td>
<td>TIMESTAMP_0_7</td>
<td>TIMESTAMP_0_6</td>
<td>TIMESTAMP_0_5</td>
<td>TIMESTAMP_0_4</td>
<td>TIMESTAMP_0_3</td>
<td>TIMESTAMP_0_2</td>
<td>TIMESTAMP_0_1</td>
<td>TIMESTAMP_0_0</td>
</tr>
<tr>
<td>TIMESTAMP1_REG</td>
<td>41h</td>
<td>TIMESTAMP_1_7</td>
<td>TIMESTAMP_1_6</td>
<td>TIMESTAMP_1_5</td>
<td>TIMESTAMP_1_4</td>
<td>TIMESTAMP_1_3</td>
<td>TIMESTAMP_1_2</td>
<td>TIMESTAMP_1_1</td>
<td>TIMESTAMP_1_0</td>
</tr>
<tr>
<td>TIMESTAMP2_REG</td>
<td>42h</td>
<td>TIMESTAMP_2_7</td>
<td>TIMESTAMP_2_6</td>
<td>TIMESTAMP_2_5</td>
<td>TIMESTAMP_2_4</td>
<td>TIMESTAMP_2_3</td>
<td>TIMESTAMP_2_2</td>
<td>TIMESTAMP_2_1</td>
<td>TIMESTAMP_2_0</td>
</tr>
<tr>
<td>STEP_TIMESTAMP_L</td>
<td>49h</td>
<td>STEP_TIME_STAMP_L_7</td>
<td>STEP_TIME_STAMP_L_6</td>
<td>STEP_TIME_STAMP_L_5</td>
<td>STEP_TIME_STAMP_L_4</td>
<td>STEP_TIME_STAMP_L_3</td>
<td>STEP_TIME_STAMP_L_2</td>
<td>STEP_TIME_STAMP_L_1</td>
<td>STEP_TIME_STAMP_L_0</td>
</tr>
<tr>
<td>STEP_TIMESTAMP_H</td>
<td>4Ah</td>
<td>STEP_TIME_STAMP_L_7</td>
<td>STEP_TIME_STAMP_L_6</td>
<td>STEP_TIME_STAMP_L_5</td>
<td>STEP_TIME_STAMP_L_4</td>
<td>STEP_TIME_STAMP_L_3</td>
<td>STEP_TIME_STAMP_L_2</td>
<td>STEP_TIME_STAMP_L_1</td>
<td>STEP_TIME_STAMP_L_0</td>
</tr>
<tr>
<td>STEP_COUNTER_L</td>
<td>4Bh</td>
<td>STEP_COUNTER_L_7</td>
<td>STEP_COUNTER_L_6</td>
<td>STEP_COUNTER_L_5</td>
<td>STEP_COUNTER_L_4</td>
<td>STEP_COUNTER_L_3</td>
<td>STEP_COUNTER_L_2</td>
<td>STEP_COUNTER_L_1</td>
<td>STEP_COUNTER_L_0</td>
</tr>
<tr>
<td>STEP_COUNTER_H</td>
<td>4Ch</td>
<td>STEP_COUNTER_H_7</td>
<td>STEP_COUNTER_H_6</td>
<td>STEP_COUNTER_H_5</td>
<td>STEP_COUNTER_H_4</td>
<td>STEP_COUNTER_H_3</td>
<td>STEP_COUNTER_H_2</td>
<td>STEP_COUNTER_H_1</td>
<td>STEP_COUNTER_H_0</td>
</tr>
</tbody>
</table>
1.1 Embedded functions registers

The list of the registers for embedded functions available in the device is given in Table 2.

Embedded functions registers are accessible when the FUNC_CFG_EN bit is set to ‘1’ in the FUNC_CFG_ACCESS register.

<table>
<thead>
<tr>
<th>Register name</th>
<th>Address</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM_THS</td>
<td>13h</td>
<td>SM_THS_7</td>
<td>SM_THS_6</td>
<td>SM_THS_5</td>
<td>SM_THS_4</td>
<td>SM_THS_3</td>
<td>SM_THS_2</td>
<td>SM_THS_1</td>
<td>SM_THS_0</td>
</tr>
<tr>
<td>STEP_COUNT_DELTA</td>
<td>15h</td>
<td>SC_DELTA_7</td>
<td>SC_DELTA_6</td>
<td>SC_DELTA_5</td>
<td>SC_DELTA_4</td>
<td>SC_DELTA_3</td>
<td>SC_DELTA_2</td>
<td>SC_DELTA_1</td>
<td>SC_DELTA_0</td>
</tr>
</tbody>
</table>
2 Operating modes

The LSM6DS33 provides three possible operating configurations:

- only accelerometer active and gyroscope in Power-Down;
- only gyroscope active and accelerometer in Power-Down;
- both accelerometer and gyroscope active with independent ODR.

After the power supply is applied, the LSM6DS33 performs a 20 ms boot procedure to load the trimming parameters. After the boot is completed, both the accelerometer and the gyroscope are automatically configured in Power-Down mode.

The accelerometer and the gyroscope can be independently configured in four different power modes: Power-Down, Low-Power, Normal and High-Performance mode. They are allowed to have different data rates without any limit. The gyroscope sensor can also be set in Sleep mode to reduce its power consumption.

When both the accelerometer and gyroscope are on, the accelerometer is synchronized with the gyroscope and the data rates of the two sensors are integer multiples of each other. If the accelerometer and the gyroscope have been configured with the same output data rate, the gyroscope data-ready signal (DRDY_G) is always subsequent to the accelerometer data-ready signal (DRDY_XL); in this case, for synchronous reading of the two sensors, it is convenient to use the gyroscope data-ready signal.

Referring to the LSM6DS33 datasheet, the output data rate (ODR_XL) bits of CTRL1_XL register and the High-Performance disable (XL_HM_MODE) bit of CTRL6_C register are used to select the power mode and the output data rate of the accelerometer sensor (Table 3).

Table 3. Accelerometer ODR and power mode selection

<table>
<thead>
<tr>
<th>ODR_XL [3:0]</th>
<th>ODR [Hz] when XL_HM_MODE = 1</th>
<th>ODR [Hz] when XL_HM_MODE = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Power Down</td>
<td>Power Down</td>
</tr>
<tr>
<td>0001</td>
<td>13 Hz (Low Power)</td>
<td>13 Hz (High Performance)</td>
</tr>
<tr>
<td>0010</td>
<td>26 Hz (Low Power)</td>
<td>26 Hz (High Performance)</td>
</tr>
<tr>
<td>0011</td>
<td>52 Hz (Low Power)</td>
<td>52 Hz (High Performance)</td>
</tr>
<tr>
<td>0100</td>
<td>104 Hz (Normal mode)</td>
<td>104 Hz (High Performance)</td>
</tr>
<tr>
<td>0101</td>
<td>208 Hz (Normal mode)</td>
<td>208 Hz (High Performance)</td>
</tr>
<tr>
<td>0110</td>
<td>416 Hz (High Performance)</td>
<td>416 Hz (High Performance)</td>
</tr>
<tr>
<td>0111</td>
<td>833 Hz (High Performance)</td>
<td>833 Hz (High Performance)</td>
</tr>
<tr>
<td>1000</td>
<td>1.66 kHz (High Performance)</td>
<td>1.66 kHz (High Performance)</td>
</tr>
<tr>
<td>1001</td>
<td>3.33 kHz (High Performance)</td>
<td>3.33 kHz (High Performance)</td>
</tr>
<tr>
<td>1010</td>
<td>6.66 kHz (High Performance)</td>
<td>6.66 kHz (High Performance)</td>
</tr>
</tbody>
</table>

The output data rate (ODR_G) bits of CTRL2_G register and the High-Performance disable (G_HM_MODE) bit of CTRL7_G register are used to select the power mode and output data rate of the gyroscope sensor (Table 4).
Table 4. Gyroscope ODR and power mode selection

<table>
<thead>
<tr>
<th>ODR_G [3:0]</th>
<th>ODR [Hz] when G_HM_MODE = 1</th>
<th>ODR [Hz] when G_HM_MODE = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Power Down</td>
<td>Power Down</td>
</tr>
<tr>
<td>0001</td>
<td>13 Hz (Low Power)</td>
<td>13 Hz (High Performance)</td>
</tr>
<tr>
<td>0010</td>
<td>26 Hz (Low Power)</td>
<td>26 Hz (High Performance)</td>
</tr>
<tr>
<td>0011</td>
<td>52 Hz (Low Power)</td>
<td>52 Hz (High Performance)</td>
</tr>
<tr>
<td>0100</td>
<td>104 Hz (Normal mode)</td>
<td>104 Hz (High Performance)</td>
</tr>
<tr>
<td>0101</td>
<td>208 Hz (Normal mode)</td>
<td>208 Hz (High Performance)</td>
</tr>
<tr>
<td>0110</td>
<td>416 Hz (High Performance)</td>
<td>416 Hz (High Performance)</td>
</tr>
<tr>
<td>0111</td>
<td>833 Hz (High Performance)</td>
<td>833 Hz (High Performance)</td>
</tr>
<tr>
<td>1000</td>
<td>1.66 kHz (High Performance)</td>
<td>1.66 kHz (High Performance)</td>
</tr>
</tbody>
</table>

Table 5 shows the typical values of LSM6DS33 power consumption for the different operating modes.

Table 5. Power consumption

<table>
<thead>
<tr>
<th>ODR [Hz]</th>
<th>Accelerometer only (at Vdd = 1.8 V)</th>
<th>Gyroscope only (at Vdd = 1.8 V)</th>
<th>Combo [Acc + Gyro] (at Vdd = 1.8 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Down</td>
<td>-</td>
<td>-</td>
<td>6 μA</td>
</tr>
<tr>
<td>13 Hz (Low Power)</td>
<td>24 μA</td>
<td>470 μA</td>
<td>425 μA</td>
</tr>
<tr>
<td>26 Hz (Low Power)</td>
<td>31 μA</td>
<td>500 μA</td>
<td>450 μA</td>
</tr>
<tr>
<td>52 Hz (Low Power)</td>
<td>45 μA</td>
<td>540 μA</td>
<td>500 μA</td>
</tr>
<tr>
<td>104 Hz (Normal mode)</td>
<td>70 μA</td>
<td>625 μA</td>
<td>600 μA</td>
</tr>
<tr>
<td>208 Hz (Normal mode)</td>
<td>120 μA</td>
<td>880 μA</td>
<td>900 μA</td>
</tr>
<tr>
<td>13 Hz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>26 Hz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>52 Hz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>104 Hz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>208 Hz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>416 Hz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>833 Hz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>1.66 kHz (High Perf.)</td>
<td>240 μA</td>
<td>1.15 mA</td>
<td>1.25 mA</td>
</tr>
<tr>
<td>3.33 kHz (High Perf.)</td>
<td>325 μA</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>6.66 kHz (High Perf.)</td>
<td>325 μA</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
2.1 **Power-Down mode**

When the accelerometer/gyroscope is in Power-Down mode, almost all internal blocks of the device are switched off to minimize power consumption. Digital interfaces (I²C and SPI) are still active to allow communication with the device. The content of the configuration registers is preserved and the output data registers are not updated, keeping the last data sampled in memory before going into Power-Down mode.

2.2 **High-Performance mode**

In High-Performance mode, all accelerometer/gyroscope circuitry is always on and data are generated at the data rate selected through the ODR_XL/ODR_G bits.

Data interrupt generation is active.

2.3 **Normal mode**

While High-Performance mode guarantees the best performance in terms of noise, Normal mode further reduces the current consumption. The accelerometer/gyroscope data reading chain is automatically turned on and off to save power. In the gyroscope device, only the driving circuitry is always on.

Data interrupt generation is active.

2.4 **Low-Power mode**

Low-Power mode differs from Normal mode in the available output data rates. In Low-Power mode low-speed ODRs are enabled; three low-speed ODRs can be chosen through the ODR_XL/ODR_G bits: 13 Hz, 26 Hz and 52 Hz.

Data interrupt generation is active.

2.5 **Gyroscope Sleep mode**

While the gyroscope is in Sleep mode the circuitry that drives the oscillation of the gyroscope mass is kept active. Compared to gyroscope Power-Down, turn-on time from Sleep mode to Low-Power/Normal/High-Performance mode is drastically reduced.

If the gyroscope is not configured in Power-Down mode, it enters in Sleep mode when the Sleep mode enable (SLEEP_G) bit of CTRL4_C register is set to 1, regardless of the selected gyroscope ODR.
2.6 Accelerometer bandwidth

The accelerometer sampling chain (Figure 1) is represented by a cascade of four blocks: an analog low-pass filter, an ADC converter, a digital low-pass filter and the composite group of digital filters described in Figure 2.

Figure 1. Accelerometer sampling chain diagram

![Accelerometer sampling chain diagram](image)

The analog signal coming from the mechanical parts is filtered by a low-pass anti-aliasing filter before being converted by the ADC. The anti-aliasing filter is enabled in High-Performance mode only.

If the XL_BW_SCAL_ODR bit in CTRL4_C register is set to 1, the bandwidth of this analog filter is determined by setting the BW_XL bits of CTRL1_XL register; relative filter cutoff frequency values are given in Table 6. If the XL_BW_SCAL_ODR bit is set to 0, the bandwidth of the analog filter is determined by the ODR_XL selection (Table 7).

Table 6. Accelerometer anti-aliasing filter bandwidth selection (XL_BW_SCAL_ODR=1)

<table>
<thead>
<tr>
<th>BW_XL[1:0]</th>
<th>Bandwidth [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>400</td>
</tr>
<tr>
<td>01</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 7. Accelerometer anti-aliasing bandwidth options (High-Performance mode)

<table>
<thead>
<tr>
<th>Accelerometer ODR [Hz]</th>
<th>Analog filter cutoff [Hz] XL_BW_SCAL_ODR = 0</th>
<th>Analog filter cutoff [Hz] XL_BW_SCAL_ODR = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Hz (High Performance)</td>
<td>50</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>26 Hz (High Performance)</td>
<td>50</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>52 Hz (High Performance)</td>
<td>50</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>104 Hz (High Performance)</td>
<td>50</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>208 Hz (High Performance)</td>
<td>100</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>416 Hz (High Performance)</td>
<td>200</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>833 Hz (High Performance)</td>
<td>400</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>1.66 kHz (High Performance)</td>
<td>400</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>3.33 kHz (High Performance)</td>
<td>FILTER NOT USED</td>
<td>BW_XL[1:0]</td>
</tr>
<tr>
<td>6.66 kHz (High Performance)</td>
<td>FILTER NOT USED</td>
<td>BW_XL[1:0]</td>
</tr>
</tbody>
</table>
The digital signal is then filtered by a low-pass digital filter (LPF1) whose cutoff frequency depends on the selected accelerometer ODR, as shown in Table 8.

Table 8. Accelerometer LPF1 cutoff frequency

<table>
<thead>
<tr>
<th>Accelerometer ODR [Hz]</th>
<th>LPF1 digital Filter cutoff frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Hz (Low Power)</td>
<td>742</td>
</tr>
<tr>
<td>26 Hz (Low Power)</td>
<td>742</td>
</tr>
<tr>
<td>52 Hz (Low Power)</td>
<td>742</td>
</tr>
<tr>
<td>104 Hz (Normal mode)</td>
<td>742</td>
</tr>
<tr>
<td>208 Hz (Normal mode)</td>
<td>742</td>
</tr>
<tr>
<td>13 Hz (High Performance)</td>
<td>23</td>
</tr>
<tr>
<td>26 Hz (High Performance)</td>
<td>46</td>
</tr>
<tr>
<td>52 Hz (High Performance)</td>
<td>92</td>
</tr>
<tr>
<td>104 Hz (High Performance)</td>
<td>184</td>
</tr>
<tr>
<td>208 Hz (High Performance)</td>
<td>369</td>
</tr>
<tr>
<td>416 Hz (High Performance)</td>
<td>742</td>
</tr>
<tr>
<td>833 Hz (High Performance)</td>
<td>1517</td>
</tr>
<tr>
<td>1.66 kHz (High Performance)</td>
<td>3320</td>
</tr>
<tr>
<td>3.33 kHz (High Performance)</td>
<td>1517</td>
</tr>
<tr>
<td>6.66 kHz (High Performance)</td>
<td>3320</td>
</tr>
</tbody>
</table>

Finally, the digital signal is processed by the composite group of filters composed of a low-pass digital filter (LPF2), a high-pass digital filter and a slope filter. As shown in Figure 2, it is possible to independently apply these filters to the accelerometer output data (and to the FIFO data) and/or to the interrupt generators.

The enable signal of these high-pass and low-pass digital filters is the logic “OR” of the SLOPE_FDS bit of the TAP_CFG register and the FUNC_EN bit of the CTRL10_C register.

The SLOPE_FDS bit is also used to select the filter (high-pass or slope) used for the wake-up interrupt functionality. For this reason, if the wake-up functionality is implemented using the slope filter and also the LPF2 filter is required, the latter has to be enabled by setting the FUNC_EN bit to 1.

In all other cases, to enable the high-pass and low-pass digital filters it’s recommended to set to 1 the SLOPE_FDS bit and set to 0 the FUNC_EN bit (if the embedded functions, such as the Android functions, are not used).
The bits LPF2_XL_EN, HP_SLOPE_XL_EN and HPCF_XL [1:0] of CTRL8_XL are used to select the filter applied to the accelerometer output data and to the FIFO data:

- if both the LPF2_XL_EN bit and the HP_SLOPE_XL_EN bit are set to 0, no filter is applied;
- if the LPF2_XL_EN bit is set to 1, the LP digital filter is applied, regardless of the HP_SLOPE_XL_EN bit configuration;
- if the LPF2_XL_EN bit is set to 0 and the HP_SLOPE_XL_EN bit is set to 1, the applied filter depends on the configuration of the HPCF_XL [1:0] bits, as shown in Table 9.

The HPCF_XL [1:0] bits of CTRL8_XL are also used to select the cutoff frequency of the LPF2 filter, as shown in Table 10. This low-pass filter can also be used in the 6D/4D functionality by setting the LOW_PASS_ON_6D bit of CTRL8_XL register to 1.

Table 9. Accelerometer slope and high-pass filter selection and cutoff frequency

<table>
<thead>
<tr>
<th>HPCF_XL[1:0]</th>
<th>Applied filter</th>
<th>HP digital filter cutoff frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Slope</td>
<td>ODR_XL / 4</td>
</tr>
<tr>
<td>01</td>
<td>High-Pass</td>
<td>ODR_XL / 100</td>
</tr>
<tr>
<td>10</td>
<td>High-Pass</td>
<td>ODR_XL / 9</td>
</tr>
<tr>
<td>11</td>
<td>High-Pass</td>
<td>ODR_XL / 400</td>
</tr>
</tbody>
</table>
2.6.1 Accelerometer slope filter

As shown in Figure 2, the LSM6DS33 device embeds a digital slope filter which is used for activity/inactivity and single/double-tap features; it can also be used for wake-up detection when the SLOPE_FDS bit of the TAP_CFG register is set to 0.

The slope filter output data is computed using the following formula:

$$\text{slope}(t_n) = \frac{\text{acc}(t_n) - \text{acc}(t_{n-1})}{2}$$

An example of a slope data signal is illustrated in Figure 3.

![Figure 3. Accelerometer slope filter](image-url)
2.6.2 Accelerometer turn-on/off time

The accelerometer reading chain contains low-pass filtering to improve signal-to-noise performance and to reduce aliasing effects. For this reason it is needed to take into account the settling time of the filter when the accelerometer / gyroscope power mode is switched or when the accelerometer / gyroscope ODR is changed.

The delay in order to switch accelerometer modes is shown in Table 11.

No anti-aliasing filter is used in Low-Power mode and in Normal mode: in these cases no samples have to be discarded.

The anti-aliasing filter is bypassed also when the XL_BW_SCAL_ODR bit of the CTRL4_C register is set to 0 and the accelerometer ODR is set to 3.33 kHz or 6.66 kHz: in these cases the number of samples to be discarded is equal to 2 and 4, respectively.

Table 12 clarifies how many accelerometer samples have to be discarded in High-Performance mode depending on the internal filter bandwidth and output data rate selection. Bandwidth value selection is described in Table 7.

Setting the DRDY_MASK bit of the CTRL4_C register to 1, the accelerometer and gyroscope data-ready signals are masked until the settling of the sensor filters is completed: this feature allows automatically ignoring the samples to be discarded.

Table 11. Accelerometer turn-on/off time

<table>
<thead>
<tr>
<th>Starting mode</th>
<th>Target mode</th>
<th>Max turn-on/off time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Down</td>
<td>Low Power / Normal</td>
<td>First sample correct</td>
</tr>
<tr>
<td>Power Down</td>
<td>High Performance</td>
<td>see Table 12</td>
</tr>
<tr>
<td>Low Power / Normal</td>
<td>High Performance</td>
<td>see Table 12</td>
</tr>
<tr>
<td>Low Power / Normal / High Perf.</td>
<td>Power Down</td>
<td>1 μs</td>
</tr>
</tbody>
</table>

Table 12. Accelerometer number of samples to be discarded (High-Perf. mode)

<table>
<thead>
<tr>
<th>Accelerometer ODR [Hz]</th>
<th>BW = 400 Hz</th>
<th>BW = 200 Hz</th>
<th>BW = 100 Hz</th>
<th>BW = 50 Hz</th>
<th>No filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Hz (High Perf.)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26 Hz (High Perf.)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>N.A.</td>
</tr>
<tr>
<td>52 Hz (High Perf.)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>N.A.</td>
</tr>
<tr>
<td>104 Hz (High Perf.)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>N.A.</td>
</tr>
<tr>
<td>208 Hz (High Perf.)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>N.A.</td>
</tr>
<tr>
<td>416 Hz (High Perf.)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>N.A.</td>
</tr>
<tr>
<td>833 Hz (High Perf.)</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>N.A.</td>
</tr>
<tr>
<td>1.66 kHz (High Perf.)</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>28</td>
<td>N.A.</td>
</tr>
<tr>
<td>3.33 kHz (High Perf.)</td>
<td>8</td>
<td>16</td>
<td>28</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>6.66 kHz (High Perf.)</td>
<td>16</td>
<td>32</td>
<td>56</td>
<td>112</td>
<td>4</td>
</tr>
</tbody>
</table>
2.7 Gyroscope bandwidth

The gyroscope sampling chain is represented by a cascade of four blocks: analog low-pass anti-aliasing filter, ADC converter, digital low-pass filter and a selectable high-pass filter (Figure 4).

![Figure 4. Gyroscope sampling chain diagram](image)

The analog signal coming from the mechanical parts is filtered by a low-pass anti-aliasing filter (having a constant bandwidth) before being converted by the ADC. The digital signal is then filtered by a low-pass digital filter whose cutoff frequency depends on the selected gyroscope ODR: the cutoff values in Low-Power and Normal mode are shown in Table 13; the cutoff values related to High-Performance mode are indicated in Table 14.

<table>
<thead>
<tr>
<th>Gyroscope ODR [Hz]</th>
<th>Cutoff [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Hz (Low Power)</td>
<td>3.9</td>
</tr>
<tr>
<td>26 Hz (Low Power)</td>
<td>7.9</td>
</tr>
<tr>
<td>52 Hz (Low Power)</td>
<td>15.8</td>
</tr>
<tr>
<td>104 Hz (Normal mode)</td>
<td>31.4</td>
</tr>
<tr>
<td>208 Hz (Normal mode)</td>
<td>60.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gyroscope ODR [Hz]</th>
<th>Cutoff [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Hz (High Perf.)</td>
<td>4.2</td>
</tr>
<tr>
<td>26 Hz (High Perf.)</td>
<td>8.3</td>
</tr>
<tr>
<td>52 Hz (High Perf.)</td>
<td>16.6</td>
</tr>
<tr>
<td>104 Hz (High Perf.)</td>
<td>33.4</td>
</tr>
<tr>
<td>208 Hz (High Perf.)</td>
<td>66.7</td>
</tr>
<tr>
<td>416 Hz (High Perf.)</td>
<td>135.9</td>
</tr>
<tr>
<td>833 Hz (High Perf.)</td>
<td>295.4</td>
</tr>
<tr>
<td>1.66 kHz (High Perf.)</td>
<td>1057.0</td>
</tr>
</tbody>
</table>
The LSM6DS33 gyroscope provides embedded high-pass filtering capability to easily delete the DC component of the measured angular rate. As shown in Figure 4, through the HP_G_EN bit of the CTRL7_G register, it is possible to apply the filter on the gyroscope output data and on FIFO stored data.

The bandwidth of the high-pass filter depends on the settings of the HPCF_G[1:0] bits of the CTRL7_G register. The high-pass filter cutoff frequencies are shown in Table 15.

<table>
<thead>
<tr>
<th>HPCF_G1</th>
<th>HPCF_G0</th>
<th>High-pass filter cutoff frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0081</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.0324</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2.07</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16.32</td>
</tr>
</tbody>
</table>

The High-Pass filter can be reset by setting the HP_G_RST bit of the CTRL7_G register to 1. The reset operation instantly deletes the DC component of the angular rate from the next generated X, Y, Z output value (Figure 5).

After the filter resets, the HP_G_RST bit is automatically set back to 0.

Figure 5. Gyroscope high-pass filter reset
2.7.1 Gyroscope turn-on/off time

The delay in order to switch gyroscope modes is shown in Table 16. Table 17 clarifies how many gyroscope samples have to be discarded when switching from gyroscope Sleep mode to Low-Power / Normal / High-Performance mode or when the accelerometer / gyroscope ODR is changed, depending on the output data rate selection.

Setting the DRDY_MASK bit of the CTRL4_C register to 1, the accelerometer and gyroscope data-ready signals are masked until the settling of the sensor filters is completed: this feature allows automatically ignoring the samples to be discarded.

<table>
<thead>
<tr>
<th>Starting mode</th>
<th>Target mode</th>
<th>Max turn-on/off time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Down</td>
<td>Low-Power / Normal / High-Performance</td>
<td>80 ms</td>
</tr>
<tr>
<td>Power Down</td>
<td>Gyro Sleep</td>
<td>80 ms</td>
</tr>
<tr>
<td>Gyro Sleep</td>
<td>Low-Power / Normal / High-Performance</td>
<td>see Table 17</td>
</tr>
<tr>
<td>Low-Power / Normal / High-Performance</td>
<td>Power-Down</td>
<td>1 μs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gyroscope ODR [Hz]</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Hz</td>
<td>2</td>
</tr>
<tr>
<td>26 Hz</td>
<td>2</td>
</tr>
<tr>
<td>52 Hz</td>
<td>2</td>
</tr>
<tr>
<td>104 Hz</td>
<td>2</td>
</tr>
<tr>
<td>208 Hz</td>
<td>2</td>
</tr>
<tr>
<td>416 Hz</td>
<td>2</td>
</tr>
<tr>
<td>833 Hz</td>
<td>3</td>
</tr>
<tr>
<td>1.66 kHz</td>
<td>4</td>
</tr>
</tbody>
</table>
3 Reading output data

3.1 Startup sequence

Once the device is powered up, it automatically downloads the calibration coefficients from the embedded flash to the internal registers. When the boot procedure is completed, i.e. after approximately 20 milliseconds, the accelerometer and gyroscope automatically enter Power-Down mode.

To turn on the accelerometer and gather acceleration data, it is necessary to select one of the operating modes through the CTRL1_XL register and to enable at least one of the axes through CTRL9_XL.

The following general-purpose sequence can be used to configure the accelerometer:

1. Write CTRL9_XL = 38h // Acc X, Y, Z axes enabled
2. Write CTRL1_XL = 60h // Acc = 416Hz (High-Performance mode)
3. Write INT1_CTRL = 01h // Acc Data Ready interrupt on INT1

To turn on the gyroscope and gather angular rate data, it is necessary to select one of the operating modes through the CTRL2_G register and to enable at least one of the axes through CTRL10_C.

The following general-purpose sequence can be used to configure the gyroscope:

1. Write CTRL10_C = 38h // Gyro X, Y, Z axes enabled
2. Write CTRL2_G = 60h // Gyro = 416Hz (High-Performance mode)
3. Write INT1_CTRL = 02h // Gyro Data Ready interrupt on INT1

3.2 Using the status register

The device is provided with a STATUS_REG register which should be polled to check when a new set of data is available. The XLDA bit is set to 1 when a new set of data is available at accelerometer output; the GDA bit is set to 1 when a new set of data is available at gyroscope output.

For the accelerometer (the gyroscope is similar), the reads should be performed as follows:

1. Read STATUS
2. If XLDA = 0, then go to 1
3. Read OUTX_L_XL
4. Read OUTX_H_XL
5. Read OUTY_L_XL
6. Read OUTY_H_XL
7. Read OUTZ_L_XL
8. Read OUTZ_H_XL
9. Data processing
10. Go to 1
3.3 Using the data-ready signal

The device can be configured to have one HW signal to determine when a new set of measurement data is available for reading.

For the accelerometer sensor, the data-ready signal is represented by the XLDA bit of the STATUS_REG register. The signal can be driven to the INT1 pin by setting to 1 the INT1_DRDY_XL bit of the INT1_CTRL register and to the INT2 pin by setting to 1 the INT2_DRDY_XL bit of the INT2_CTRL register.

For the gyroscope sensor, the data-ready signal is represented by the GDA bit of the STATUS_REG register. The signal can be driven to the INT1 pin by setting to 1 the INT1_DRDY_G bit of the INT1_CTRL register and to the INT2 pin by setting to 1 the INT2_DRDY_G bit of the INT2_CTRL register.

The data-ready signal rises to 1 when a new set of data has been generated and it is available for reading. The interrupt is reset when the higher part of one of the enabled channels has been read (29h, 2Bh, 2Dh for the accelerometer; 23h, 25h, 27h for the gyroscope).

Setting the DRDY_MASK bit of the CTRL4_C register to 1, the accelerometer and gyroscope data-ready signals are masked until the settling of the sensor filters is completed.

Figure 6. Data-ready signal

3.4 Using the block data update (BDU) feature

If reading the accelerometer/gyroscope data is particularly slow and cannot be synchronized (or it is not required) with either the XLDA/GDA bits in the STATUS_REG register or with the DRDY signal driven to the INT1/INT2 pins, it is strongly recommended to set the BDU (block data update) bit to 1 in the CTRL3_C register.

This feature avoids reading values (most significant and least significant parts of output data) related to different samples. In particular, when the BDU is activated, the data registers related to each channel always contain the most recent output data produced by the device, but, in case the read of a given pair (i.e. OUTX_H_XL(G) and OUTX_L_XL(G), OUTY_H_XL(G) and OUTY_L_XL(G), OUTZ_H_XL(G) and OUTZ_L_XL(G)) is initiated, the refresh for that pair is blocked until both MSB and LSB parts of the data are read.

Note: BDU only guarantees that the LSB part and MSB part have been sampled at the same moment. For example, if the reading speed is too slow, X and Y can be read at T1 and Z sampled at T2.
3.5 Understanding output data

The measured acceleration data are sent to the OUTX_H_XL, OUTX_L_XL, OUTY_H_XL, OUTY_L_XL, OUTZ_H_XL, and OUTZ_L_XL registers. These registers contain, respectively, the most significant part and the least significant part of the acceleration signals acting on the X, Y, and Z axes.

The measured angular rate data are sent to the OUTX_H_G, OUTX_L_G, OUTY_H_G, OUTY_L_G, OUTZ_H_G, and OUTZ_L_G registers. These registers contain, respectively, the most significant part and the least significant part of the angular rate signals acting on the X, Y, and Z axes.

The complete output data for the X, Y, Z channels is given by the concatenation OUTX_H_XL(G) & OUTX_L_XL(G), OUTY_H_XL(G) & OUTY_L_XL(G), OUTZ_H_XL(G) & OUTZ_L_XL(G) and it is expressed as a two's complement number.

Both acceleration data and angular rate data are represented as 16-bit numbers.

3.5.1 Big-little endian selection

The LSM6DS33 allows swapping the content of the lower and the upper part of the output data registers (i.e. OUTX_H_XL(G) with OUTX_L_XL(G), and OUT_TEMP_H with OUT_TEMP_L) in order to be compliant with both little-endian and big-endian data representations.

“Little Endian” means that the low-order byte of the number is stored in memory at the lowest address, and the high-order byte at the highest address. This mode corresponds to the BLE bit of the CTRL3_C register set to 0 (default configuration).

On the contrary, “Big Endian” means that the high-order byte of the number is stored in memory at the lowest address, and the low-order byte at the highest address. This mode corresponds to the BLE bit of the CTRL3_C register set to 1.

3.5.2 Examples of output data

Table 18 provides a few basic examples of the accelerometer data that is read in the data registers when the device is subject to a given acceleration.

Table 19 provides a few basic examples of the gyroscope data that is read in the data registers when the device is subject to a given angular rate.

The values listed in the following tables are given under the hypothesis of perfect device calibration (i.e. no offset, no gain error,....) and practically show the effect of the BLE bit.
Table 18. Output data registers content vs. acceleration (FS_XL = 2 g)

<table>
<thead>
<tr>
<th>Acceleration values</th>
<th>BLE = 0</th>
<th>BLE = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTX_H_XL (29h)</td>
<td>OUTX_L_XL (28h)</td>
</tr>
<tr>
<td>0 g</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>350 mg</td>
<td>16h</td>
<td>69h</td>
</tr>
<tr>
<td>1 g</td>
<td>40h</td>
<td>09h</td>
</tr>
<tr>
<td>-350 mg</td>
<td>E9h</td>
<td>97h</td>
</tr>
<tr>
<td>-1 g</td>
<td>BFh</td>
<td>F7h</td>
</tr>
</tbody>
</table>

Table 19. Output data registers content vs. angular rate (FS_G = 245 dps)

<table>
<thead>
<tr>
<th>Angular rate values</th>
<th>BLE = 0</th>
<th>BLE = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTX_H_G (23h)</td>
<td>OUTX_L_G (22h)</td>
</tr>
<tr>
<td>0 dps</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>100 dps</td>
<td>2Ch</td>
<td>A4h</td>
</tr>
<tr>
<td>200 dps</td>
<td>59h</td>
<td>49h</td>
</tr>
<tr>
<td>-100 dps</td>
<td>D3h</td>
<td>5Ch</td>
</tr>
<tr>
<td>-200 dps</td>
<td>A6h</td>
<td>B7h</td>
</tr>
</tbody>
</table>
3.6 Rounding functions

The rounding function can be used to auto address the LSM6DS33 registers for a circular burst-mode read. Basically, with a multiple read operation the address of the register that is being read goes automatically from the first register to the last register of the pattern and then goes back to the first one.

3.6.1 Rounding of FIFO output registers

The rounding function is automatically enabled when performing a multiple read operation of the FIFO output registers FIFO_DATA_OUT_L (3Eh) and FIFO_DATA_OUT_H (3Fh).

3.6.2 Rounding of source registers

It’s possible to apply the rounding function also to the source registers of the LSM6DS33 device, in order to verify with one multiple read whether new data was generated or a new interrupt event was detected.

The rounding function on the source registers can be enabled by setting to 1 the ROUNING_STATUS bit of the CTRL7_G register: when this function is enabled, with a multiple read operation the address of the register that is being read goes automatically from STATUS_REG (1Eh) to FUNC_SRC (53h) and goes back to WAKE_UP_SRC (1Bh).

3.6.3 Rounding of sensor output registers

The rounding function can also be enabled for the following groups of output registers:
- Gyroscope output registers, from OUTX_L_G (22h) to OUTZ_H_G (27h);
- Accelerometer output registers, from OUTX_L_XL (28h) to OUTZ_H_XL (2Dh);

The output registers rounding pattern can be configured using the bits ROUNING[2:0] of the CTRL5_C register, as indicated in Table 20.

<table>
<thead>
<tr>
<th>ROUNING[2:0]</th>
<th>Rounding pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>No rounding</td>
</tr>
<tr>
<td>001</td>
<td>Accelerometer only</td>
</tr>
<tr>
<td>010</td>
<td>Gyroscope only</td>
</tr>
<tr>
<td>011</td>
<td>Gyroscope + Accelerometer</td>
</tr>
</tbody>
</table>
3.7 Gyroscope edge-sensitive/level-sensitive/impulse-sensitive data enable (DEN)

The LSM6DS33 allows external trigger level recognition by configuring the TRIG_EN, LVLen and LVL2_EN bits of the CTRL6_C register (Table 21). The default value for these three bits is 0 (external trigger is disabled). Three different trigger modes can be used: edge-, level-, or impulse-sensitive trigger; the Data Enable (DEN) input signal is driven on the INT2 pin, which is configured as an input pin when one of the gyroscope trigger modes is enabled.

<table>
<thead>
<tr>
<th>TRIG_EN</th>
<th>LVLen</th>
<th>LVL2_EN</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Edge-sensitive</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Level-sensitive</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Impulse-sensitive</td>
</tr>
</tbody>
</table>

Edge-sensitive and impulse-sensitive triggers need both accelerometer and gyroscope sensors to be active (not in Power-Down mode) and configured with the same output data rate value. The level-sensitive trigger can also work with only the gyroscope in active mode, regardless of the selected gyroscope ODR.

3.7.1 Edge-sensitive trigger

The edge-sensitive trigger is enabled when the TRIG_EN bit of CTRL6_C register is set to 1 and the LVLen and LVL2_EN bits are set to 0. Furthermore, both accelerometer and gyroscope sensors have to be in active mode and configured with the same ODR value.

Once enabled, the gyroscope output registers are updated with the next generated X, Y, Z gyroscope data at the rising edge of the DEN (INT2 pin) input signal. If no rising edge occurs, the gyroscope output registers are not updated.

![Figure 7. Data synchronization: edge-sensitive](image-url)
3.7.2 Level-sensitive trigger stamping

The level-sensitive trigger is enabled when the LVLen bit of the CTRL6_C register is set to 1 and the TRIG_EN and LVL2_EN bits are set to 0.

Once enabled, the LSB of the generated gyroscope X, Y, Z output data is replaced with the current DEN (INT2 pin) level.

![Figure 8. Data synchronization: level-sensitive](image)

3.7.3 Impulse-sensitive trigger stamping

The impulse-sensitive trigger is enabled when the LVLen and LVL2_EN bits of the CTRL6_C register are set to 1 and the TRIG_EN bit is set to 0. Furthermore, both accelerometer and gyroscope sensors have to be in active mode and configured with the same ODR value.

The impulse-sensitive trigger is similar to the level-sensitive trigger and has to be used if the duration of the DEN pulse is shorter than the selected gyroscope ODR. Once enabled, the LSB bit of the gyroscope X, Y, Z output data generated after the pulse is set to 1; if no pulse occurs, the LSB bit of the next generated gyroscope X, Y, Z output data is set to 0.

3.8 Gyroscope axes orientation

Axes orientation and sign of the gyroscope sensor can be changed by software using the ORIENT_CFG_G register, as illustrated in Figure 9.

![Figure 9. Gyroscope axes orientation and sign configuration](image)

The Orient_[2:0] bits of the ORIENT_CFG_G register allow driving the pitch, roll and yaw physical axes to the X, Y and Z output registers as indicated in Table 23.
The SignX_G, SignY_G and SignZ_G bits of the ORIENT_CFG_G register allow respectively changing (setting the bit to 1) the sign of the X, Y and Z output registers data.

Case (a) of the example in Figure 10 corresponds to the default case for axes orientation and sign, with all Orient_[2:0], SignX_G, SignY_G and SignZ_G bits of the ORIENT_CFG_G register set to 0.

In case (b) the Orient_[2:0] bits have been set to 010b, driving Pitch and Roll data on different axes than the default case; furthermore the sign on X and Z data has been changed by setting the SignX_G and SignZ_G bits to 1.

Table 22. ORIENT_CFG_G register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>SignX_G</td>
<td>SignY_G</td>
<td>SignZ_G</td>
<td>Orient_2</td>
<td>Orient_1</td>
<td>Orient_0</td>
</tr>
</tbody>
</table>

Table 23. Settings for gyroscope axes orientation

<table>
<thead>
<tr>
<th>Orient_[2:0]</th>
<th>Pitch</th>
<th>Roll</th>
<th>Yaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>001</td>
<td>X</td>
<td>Z</td>
<td>Y</td>
</tr>
<tr>
<td>010</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>011</td>
<td>Y</td>
<td>Z</td>
<td>X</td>
</tr>
<tr>
<td>100</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>101</td>
<td>Z</td>
<td>Y</td>
<td>X</td>
</tr>
</tbody>
</table>

The SignX_G, SignY_G and SignZ_G bits of the ORIENT_CFG_G register allow respectively changing (setting the bit to 1) the sign of the X, Y and Z output registers data.

Case (a) of the example in Figure 10 corresponds to the default case for axes orientation and sign, with all Orient_[2:0], SignX_G, SignY_G and SignZ_G bits of the ORIENT_CFG_G register set to 0.

In case (b) the Orient_[2:0] bits have been set to 010b, driving Pitch and Roll data on different axes than the default case; furthermore the sign on X and Z data has been changed by setting the SignX_G and SignZ_G bits to 1.
4 Interrupt generation

In the LSM6DS33 device the interrupt generation is based on accelerometer data only, so, for interrupt generation purposes, the accelerometer sensor has to be set in an active operating mode (not in Power-Down); the gyroscope sensor can be configured in Power-Down mode since it’s not involved in interrupt generation.

The interrupt generator can be configured to detect:
- Free-fall;
- Wake-up;
- 6D/4D orientation detection;
- Single-tap and double-tap sensing;
- Activity/Inactivity recognition.

In addition, the LSM6DS33 can efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. In particular, it has been designed to implement in hardware:
- Significant motion;
- Tilt;
- Pedometer functions;
- Time stamp.

All these interrupt signals, together with FIFO interrupt signals, can be independently driven to the INT1 and INT2 interrupt pins or checked by reading the dedicated source register bits.

The H_LACTIVE bit of the CTRL3_C register must be used to select the polarity of the interrupt pins. If this bit is set to 0 (default value), the interrupt pins are active high and they change from low to high level when the related interrupt condition is verified. Otherwise, if the H_LACTIVE bit is set to 1 (active low), the interrupt pins are normally at high level and they change from high to low when an interrupt condition is reached.

The PP_OD bit of CTR3_C allows changing the behavior of the interrupt pins from push-pull to open drain. If the PP_OD bit is set to 0, the interrupt pins are in push-pull configuration (low-impedance output for both high and low level). When the PP_OD bit is set to 1, only the interrupt active state is a low-impedance output.

The LIR bit of TAP_CFG allows applying the latched mode to the interrupt signals. When the LIR bit is set to 1, once the interrupt pin is asserted, it must be reset by reading the related interrupt source register. If the LIR bit is set to 0, the interrupt signal is automatically reset when the interrupt condition is no longer verified or after a certain amount of time.

4.1 Interrupt pin configuration

The device is provided with two pins that can be activated to generate either Data Ready or interrupt signals. The functionality of these pins is selected through the MD1_CFG and INT1_CTRL registers for the INT1 pin, and through the MD2_CFG and INT2_CTRL registers for the INT2 pin.

A brief description of these interrupt control registers is given in the following summary, the default value of their bits is equal to 0, which corresponds to ‘disable’. In order to enable the routing of a specific interrupt signal on the pin, the related bit has to be set to 1.
Interrupt generation

- **INT1_STEP_DETECTOR**: Pedometer step recognition interrupt on INT1.
- **INT1_SIGN_MOT**: Significant motion interrupt on INT1.
- **INT1_FULL_FLAG**: FIFO full flag interrupt on INT1.
- **INT1_FIFO_OVR**: FIFO overrun flag interrupt on INT1.
- **INT1_FTH**: FIFO threshold interrupt on INT1.
- **INT1_BOOT**: Boot interrupt on INT1.
- **INT1_DRDY_G**: Gyroscope Data-Ready on INT1.
- **INT1_DRDY_XL**: Accelerometer Data-Ready on INT1.

Table 24. INT1_CTRL register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT1_STEP_DETECTOR</td>
<td>INT1_SIGN_MOT</td>
<td>INT1_FULL_FLAG</td>
<td>INT1_FIFO_OVR</td>
<td>INT1_FTH</td>
<td>INT1_BOOT</td>
<td>INT1_DRDY_G</td>
<td>INT1_DRDY_XL</td>
</tr>
</tbody>
</table>

- **INT1_STEP_DELTA**: Pedometer step recognition on delta time interrupt on INT2.
- **INT2_STEP_COUNT_OV**: Step counter overflow interrupt on INT2.
- **INT2_FULL_FLAG**: FIFO full flag interrupt on INT2.
- **INT2_FIFO_OVR**: FIFO overrun flag interrupt on INT2.
- **INT2_FTH**: FIFO threshold interrupt on INT2.
- **INT2_DRDY_TEMP**: Temperature Data-Ready on INT2.
- **INT2_DRDY_G**: Gyroscope Data-Ready on INT2.
- **INT2_DRDY_XL**: Accelerometer Data-Ready on INT2.

Table 25. MD1_CFG register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT1_INACT_STATE</td>
<td>INT1_SINGLE_TAP</td>
<td>INT1_WU</td>
<td>INT1_FF</td>
<td>INT1_DOUBLE_TAP</td>
<td>INT1_6D</td>
<td>INT1_TILT</td>
<td>INT1_TIMER</td>
</tr>
</tbody>
</table>

Table 26. INT2_CTRL register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT2_STEP_DELTA</td>
<td>INT2_STEP_COUNT_OV</td>
<td>INT2_FULL_FLAG</td>
<td>INT2_FIFO_OVR</td>
<td>INT2_FTH</td>
<td>INT2_DRDY_TEMP</td>
<td>INT2_DRDY_G</td>
<td>INT2_DRDY_XL</td>
</tr>
</tbody>
</table>
Interrupt generation

4.2 Free-fall interrupt

Free-fall detection refers to a specific register configuration that allows recognizing when the device is in free-fall: the acceleration measured along all the axes goes to zero. In a real case a “free-fall zone” is defined around the zero-g level where all the accelerations are small enough to generate the interrupt. Configurable threshold and duration parameters are associated to free-fall event detection: the threshold parameter defines the free-fall zone amplitude; the duration parameter defines the minimum duration of the free-fall interrupt event to be recognized (Figure 11).

<table>
<thead>
<tr>
<th>Table 27. MD2_CFG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7
INT2_INACT_STATE</td>
</tr>
</tbody>
</table>

- **INT2_INACT_STATE**: Inactivity interrupt on INT2.
- **INT2_SINGLE_TAP**: Single-tap interrupt on INT2.
- **INT2_WU**: Wake-up interrupt on INT2.
- **INT2_FF**: Free-fall interrupt on INT2.
- **INT2_DOUBLE_TAP**: Double-tap interrupt on INT2.
- **INT2_6D**: 6D detection interrupt on INT2.
- **INT2_TILT**: Tilt interrupt on INT2.

If multiple interrupt signals are routed on the same pin (INTx), the logic level of this pin is the “OR” combination of the selected interrupt signals. In order to know which event has generated the interrupt condition, the related source registers have to be read: WAKE_UP_SRC, D6D_SRC, TAP_SRC and FUNC_SRC.

The INT2_on_INT1 pin of CTRL4_C register allows driving all the enabled interrupt signals in logic “OR” on the INT1 pin (by setting this bit to 1). When this bit is set to 0, the interrupt signals are divided between the INT1 and INT2 pins.

![Figure 11. Free-fall interrupt](image-url)
The free-fall interrupt signal can be driven to the two interrupt pins by setting to 1 the INT1_FF bit of the MD1_CFG register or the INT2_FF bit of the MD2_CFG register; it can also be checked by reading the FF_IA bit of the WAKE_UP_SRC register.

If latch mode is disabled (LIR bit of TAP_CFG is set to 0), the interrupt signal is automatically reset when the free-fall condition is no longer verified. If latch mode is enabled and the free-fall interrupt signal is driven to the interrupt pins, once a free-fall event has occurred and the interrupt pin is asserted, it must be reset by reading the WAKE_UP_SRC register. If the latch mode is enabled, but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

The register used to configure the threshold parameter is named FREE_FALL; the unsigned threshold value is related to the value of the FF_THS[2:0] field value as indicated in Table 28. The values given in this table are valid for each accelerometer full-scale value.

Table 28. Free-fall threshold LSB value

<table>
<thead>
<tr>
<th>FREE_FALL - FF_THS[2:0]</th>
<th>Threshold LSB value [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>156</td>
</tr>
<tr>
<td>001</td>
<td>219</td>
</tr>
<tr>
<td>010</td>
<td>250</td>
</tr>
<tr>
<td>011</td>
<td>312</td>
</tr>
<tr>
<td>100</td>
<td>344</td>
</tr>
<tr>
<td>101</td>
<td>406</td>
</tr>
<tr>
<td>110</td>
<td>469</td>
</tr>
<tr>
<td>111</td>
<td>500</td>
</tr>
</tbody>
</table>

Duration time is measured in N/ODR_XL, where N is the content of the FF_DUR[5:0] field of the FREE_FALL / WAKE_UP_DUR registers and ODR_XL is the accelerometer data rate.

A basic SW routine for the free-fall event recognition is given below.

1. Write 60h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 416 Hz, FS_XL = 2g
2. Write 00h into WAKE_UP_DUR // Set event duration (FF_DUR5 bit)
3. Write 33h into FREE_FALL // Set FF threshold (FF_THS[2:0] = 011b)
 // Set six samples event duration (FF_DUR[5:0] = 000110b)
4. Write 10h into MD1_CFG // FF interrupt driven to INT1 pin
5. Write 01h into TAP_CFG // Latch interrupt

The sample code exploits a threshold set to 312 mg for free-fall recognition and the event is notified by hardware through the INT1 pin. The FF_DUR[5:0] field of the FREE_FALL / WAKE_UP_DUR registers is configured like this to ignore events that are shorter than 6/ODR_XL = 6/412 Hz = 15 msec in order to avoid false detections.
4.3 Wake-up interrupt

In the LSM6DS33 device the wake-up feature can be implemented using either the slope filter (see Section 2.6.1 for more details) or the high-pass digital filter, as illustrated in Figure 2. The filter to be applied can be selected using the SLOPE_FDS bit of the TAP_CFG register: if this bit is set to 0 (default value), the slope filter is used; if it's set to 1, the high-pass digital filter is used.

The wake-up interrupt signal is generated if a certain number of consecutive filtered data exceed the configured threshold (Figure 12).

The unsigned threshold value is defined using the WK_THS[5:0] bits of the WAKE_UP_THS register; the value of 1 LSB of these 6 bits depends on the selected accelerometer full scale: 1 LSB = (FS_XL)/(2^6). The threshold is applied to both positive and negative data: for a wake-up interrupt generation, the module of the filtered data must be bigger than the threshold.

The duration parameter defines the minimum duration of the wake-up event to be recognized; its value is set using the WAKE_DUR[1:0] bits of the WAKE_UP_DUR register: 1 LSB corresponds to 1*ODR_XL time, where ODR_XL is the accelerometer output data rate. It is important to appropriately define the duration parameter to avoid unwanted wake-up interrupts due to spurious spikes of the input signal.

This interrupt signal can be driven to the two interrupt pins setting to 1 the INT1_WU bit of the MD1_CFG register or the INT2_WU bit of the MD2_CFG register; it can also be checked by reading the WU_IA bit of the WAKE_UP_SRC register. The X_WU, Y_WU, Z_WU bits of the WAKE_UP_SRC register indicate which axis has triggered the wake-up event.

If latch mode is disabled (LIR bit of TAP_CFG is set to 0), the interrupt signal is automatically reset when the filtered data falls below the threshold. If latch mode is enabled and the wake-up interrupt signal is driven to the interrupt pins, once a wake-up event has occurred and the interrupt pin is asserted, it must be reset by reading the WAKE_UP_SRC register. If the latch mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

Figure 12. Wake-up interrupt (using the slope filter)
The example code which implements the SW routine for the wake-up event recognition using the slope filter is given below.

1. Write 60h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 416 Hz, FS_XL = 2g
2. Write 00h into TAP_CFG // Apply slope filter; latch mode disabled
3. Write 00h into WAKE_UP_DUR // No duration
4. Write 02h into WAKE_UP_THS // Set wake-up threshold
5. Write 20h into MD1_CFG // Wake-up interrupt driven to INT1 pin

Since the duration time is set to zero, the wake-up interrupt signal is generated for each X,Y,Z slope data exceeding the configured threshold. The WK_THS field of the WAKE_UP_THS register is set to 000010b, therefore the wake-up threshold is 62.5 mg (= 2 * FS_XL / 2^6).

4.4 6D/4D orientation detection

The LSM6DS33 device provides the capability to detect the orientation of the device in space, enabling easy implementation of energy-saving procedures and automatic image rotation for mobile devices.

4.4.1 6D orientation detection

Six orientations of the device in space can be detected; the interrupt signal is asserted when the device switches from one orientation to another. The interrupt is not reasserted as long as the position is maintained.

6D interrupt is generated when, for two consecutive samples, only one axis exceeds a selected threshold and the acceleration values measured from the other two axes are lower than the threshold: the ZH, ZL, YH, YL, XH, XL bits of the D6D_SRC (1Dh) register indicate which axis has triggered the 6D event.

In more detail:

- **D6D_IA** is set high when the device switches from one orientation to another.
- **ZH** (YH, XH) is set high when the face perpendicular to the Z(Y,X) axis is almost flat and the acceleration measured on the Z(Y,X) axis is positive and in the module bigger than the threshold.
- **ZL** (YL, XL) is set high when the face perpendicular to the Z(Y,X) axis is almost flat and the acceleration measured on the Z(Y,X) axis is negative and in the module bigger than the threshold.

The SIXD_THS[1:0] bits of the TAP_THS_6D register are used to select the threshold value used to detect the change in device orientation. The threshold values given in Table 30 are valid for each accelerometer full-scale value.
The low-pass filter LPF2 can also be used in 6D functionality by setting the LOW_PASS_ON_6D bit of the CTRL8_XL register to 1. The LPF2 filter has to be enabled as described in Section 2.6.

This interrupt signal can be driven to the two interrupt pins by setting to 1 the INT1_6D bit of the MD1_CFG register or the INT2_6D bit of the MD2_CFG register; it can also be checked by reading the D6D_IA bit of the D6D_SRC register.

If latch mode is disabled (LIR bit of TAP_CFG is set to 0), the interrupt signal is active only for 1/ODR_XL[s] then it is automatically deasserted (ODR_XL is the accelerometer output data rate). If latch mode is enabled and the 6D interrupt signal is driven to the interrupt pins, once an orientation change has occurred and the interrupt pin is asserted, a reading of the D6D_SRC register clears the request and the device is ready to recognize a different orientation. If latch mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

Referring to the six possible cases illustrated in Figure 13, the content of the D6D_SRC register for each position is shown in Table 31.

<table>
<thead>
<tr>
<th>SIXD_THS[1:0]</th>
<th>Threshold value [degrees]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>80</td>
</tr>
<tr>
<td>01</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 13. 6D recognized orientations
Hereafter an example which implements the SW routine for 6D orientation detection.

1. Write 60h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 416 Hz, FS_XL = 2g
2. Write 40h into TAP_THS_6D // Set 6D threshold (SIXD_THS[1:0] = 10b = 60 degrees)
3. Write 10h into TAP_CFG // Enable LPF2 filter
4. Write 01h into CTRL8_XL // Apply LPF2 filter to 6D functionality
5. Write 04h into MD1_CFG // 6D interrupt driven to INT1 pin

4D orientation detection

The 4D direction function is a subset of the 6D function especially defined to be implemented in mobile devices for portrait and landscape computation. It can be enabled by setting the D4D_EN bit of the TAP_THS_6D register to 1. In this configuration, the Z-axis position detection is disabled, therefore reducing position recognition to cases (a), (b), (c), and (d) of Table 31.

4.5 Single-tap and double-tap recognition

The single-tap and double-tap recognition functions featured in the LSM6DS33 help to create a man-machine interface with little software loading. The device can be configured to output an interrupt signal on a dedicated pin when tapped in any direction.

If the sensor is exposed to a single input stimulus, it generates an interrupt request on the inertial interrupt pin INT1 and/or INT2. A more advanced feature allows the generation of an interrupt request when a double input stimulus with programmable time between the two events is recognized, enabling a mouse button-like function.

In the LSM6DS33 device the single-tap and double-tap recognition functions use the slope between two consecutive acceleration samples to detect the tap events; the slope data is computed using the following formula:

\[
slope(t_n) = \frac{[\text{acc}(t_n) - \text{acc}(t_{n-1})]}{2}
\]

This function can be fully programmed by the user in terms of expected amplitude and timing of the slope data by means of a dedicated set of registers.

Single and double-tap recognition work independently of the selected output data rate. Recommended accelerometer ODRs for these functions are 416 Hz and 833 Hz.
4.5.1 Single tap

If the device is configured for single-tap event detection, an interrupt is generated when the slope data of the selected channel exceeds the programmed threshold and returns below it within the Shock time window.

In the single-tap case, if the LIR bit of the TAP_CFG register is set to 0, the interrupt is kept high for the duration of the Quiet window.

In order to enable the latch feature on the single-tap interrupt signal, both the LIR bit and the INT1_DOUBLE_TAP (or INT2_DOUBLE_TAP) bit of MD1_CFG (MD2_CFG) have to be set to 1: the interrupt is kept high until the TAP_SRC register is read.

The SINGLE_DOUBLE_TAP bit of WAKE_UP_THS has to be set to 0 in order to enable single-tap recognition only.

In case (a) of Figure 14 the single-tap event has been recognized, while in case (b) the tap has not been recognized because the slope data falls below the threshold after the Shock time window has expired.

![Figure 14. Single-tap event recognition](image)

4.5.2 Double tap

If the device is configured for double-tap event detection, an interrupt is generated when, after a first tap, a second tap is recognized. The recognition of the second tap occurs only if the event satisfies the rules defined by the Shock, the Latency and the Duration time windows.

In particular, after the first tap has been recognized, the second tap detection procedure is delayed for an interval defined by the Quiet time. This means that after the first tap has been recognized, the second tap detection procedure starts only if the slope data exceeds the threshold after the Quiet window but before the Duration window has expired. In case (a) of Figure 15, a double-tap event has been correctly recognized, while in case (b) the interrupt has not been generated because the slope data exceeds the threshold after the window interval has expired.
Once the second tap detection procedure is initiated, the second tap is recognized with the same rule as the first: the slope data must return below the threshold before the Shock window has expired.

It is important to appropriately define the Quiet window to avoid unwanted taps due to spurious bouncing of the input signal.

In the double-tap case, if the LIR bit of the TAP_CFG register is set to 0, the interrupt is kept high for the duration of the Quiet window. If the LIR bit is set to 1, the interrupt is kept high until the TAP_SRC register is read.

Figure 15. Double-tap event recognition (LIR bit = 0)

4.5.3 Single-tap and double-tap recognition configuration

The LSM6DS33 device can be configured to output an interrupt signal when tapped (once or twice) in any direction: the TAP_X_EN, TAP_Y_EN and TAP_Z_EN bits of the TAP_CFG register must be set to 1 to enable the tap recognition on X, Y, Z directions, respectively.

Configurable parameters for tap recognition functionality are the tap threshold and the Shock, Quiet and Duration time windows.

The TAP_THS[4:0] bits of the TAP_THS_6D register are used to select the unsigned threshold value used to detect the tap event. The value of 1 LSB of these 5 bits depends on the selected accelerometer full scale: 1 LSB = (FS_XL)/(2^5). The unsigned threshold is applied to both positive and negative slope data.

The Shock time window defines the maximum duration of the overthreshold event: the acceleration must return below the threshold before the Shock window has expired, otherwise the tap event is not detected. The SHOCK[1:0] bits of the INT_DUR2 register are
used to set the Shock time window value: the default value of these bits is 00b and corresponds to 4*ODR_XL time, where ODR_XL is the accelerometer output data rate. If the SHOCK[1:0] bits are set to a different value, 1 LSB corresponds to 8*ODR_XL time.

In the double-tap case, the Quiet time window defines the time after the first tap recognition in which there must not be any overthreshold. When the latch mode is disabled (LIR bit of TAP_CFG is set to 0), the Quiet time also defines the length of the interrupt pulse (in both single and double-tap case). The QUIET[1:0] bits of the INT_DUR2 register are used to set the Quiet time window value: the default value of these bits is 00b and corresponds to 2*ODR_XL time, where ODR_XL is the accelerometer output data rate. If the QUIET[1:0] bits are set to a different value, 1 LSB corresponds to 4*ODR_XL time.

In the double-tap case, the Duration time window defines the maximum time between two consecutive detected taps. The Duration time period starts just after the completion of the Quiet time of the first tap. The DUR[3:0] bits of the INT_DUR2 register are used to set the Duration time window value: the default value of these bits is 0000b and corresponds to 16*ODR_XL time, where ODR_XL is the accelerometer output data rate. If the DUR[3:0] bits are set to a different value, 1 LSB corresponds to 32*ODR_XL time.

Figure 16 illustrates a single-tap event (a) and a double-tap event (b). These interrupt signals can be driven to the two interrupt pins by setting to 1 the INT1_SINGLE_TAP bit of the MD1_CFG register or the INT2_SINGLE_TAP bit of the MD2_CFG register for the single-tap case, and setting to 1 the INT1_DOUBLE_TAP bit of the MD1_CFG register or the INT2_DOUBLE_TAP bit of the MD2_CFG register for the double-tap case.

No single/double tap interrupt is generated if the accelerometer is in Inactivity status (see Section 4.6 for more details).

Figure 16. Single and double-tap recognition (LIR bit = 0)
Tap interrupt signals can also be checked by reading the TAP_SRC (1Ch) register, described in Table 32.

Table 32. TAP_SRC register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TAP_IA</td>
<td>SINGLE_TAP</td>
<td>DOUBLE_TAP</td>
<td>TAP_SIGN</td>
<td>X_TAP</td>
<td>Y_TAP</td>
<td>Z_TAP</td>
</tr>
</tbody>
</table>

- TAP_IA is set high when a single-tap or double-tap event has been detected.
- SINGLE_TAP is set high when a single tap has been detected.
- DOUBLE_TAP is set high when a double tap has been detected.
- TAP_SIGN indicates the acceleration sign when the tap event is detected. It is set low in case of positive sign and it is set high in case of negative sign.
- X_TAP (Y_TAP, Z_TAP) is set high when the tap event has been detected on the X (Y, Z) axis.

Single and double-tap recognition works independently. Setting the SINGLE_DOUBLE_TAP bit of WAKE_UP_THS to 0, only the single-tap recognition is enabled: double-tap recognition is disabled and cannot be detected. When the SINGLE_DOUBLE_TAP is set to 1, both single and double-tap recognition are enabled.

If the latch mode is enabled and the interrupt signal is driven to the interrupt pins, the value assigned to SINGLE_DOUBLE_TAP also affects the behavior of the interrupt signal: when it is set to 0, the latch mode is applied to the single-tap interrupt signal; when it is set to 1, the latch mode is applied to the double-tap interrupt signal only. The latched interrupt signal is kept high until the TAP_SRC register is read. If the latch mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

4.5.4 Single-tap example

Hereafter an example code which implements the SW routine for single-tap detection.

1. Write 60h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 416 Hz, FS_XL = 2g
2. Write 0Eh into TAP_CFG // Enable tap detection on X, Y, Z axis
3. Write 09h into TAP_THS_6D // Set tap threshold
4. Write 06h into INT_DUR2 // Set Quiet and Shock time windows
5. Write 00h into WAKE_UP_THS // Only single tap enabled (SINGLE_DOUBLE_TAP = 0)
6. Write 40h into MD1_CFG // Single tap interrupt driven to INT1 pin

In this example the TAP_THS field of the TAP_THS_6D register is set to 01001b, therefore the tap threshold is 562.5 mg (= 9 * FS_XL / 2^5).

The SHOCK field of the INT_DUR2 register is set to 10b: an interrupt is generated when the slope data exceeds the programmed threshold, and returns below it within 38.5 ms (= 2 * 8 / ODR_XL) corresponding to the Shock time window.

The QUIET field of the INT_DUR2 register is set to 01b: since the latch mode is disabled, the interrupt is kept high for the duration of the Quiet window, therefore 9.6 ms (= 1 * 8 / ODR_XL).
4.5.5 Double-tap example

The example code which implements the SW routine for single-tap detection is given below.

1 Write 60h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 416 Hz, FS_XL = 2g
2 Write 0Eh into TAP_CFG // Enable tap detection on X, Y, Z axis
3 Write 0Ch into TAP_THS_6D // Set tap threshold
4 Write 7Fh into INT_DUR2 // Set Duration, Quiet and Shock time windows
5 Write 80h into WAKE_UP_THS // Single & Double tap enabled (SINGLE_DOUBLE_TAP = 1)
6 Write 08h into MD1_CFG // Double tap interrupt driven to INT1 pin

In this example the TAP_THS field of the TAP_THS_6D register is set to 01100b, therefore the tap threshold is 750 mg (= 12 * FS_XL / 2^5).

For interrupt generation, during the first and the second tap the slope data must return below the threshold before the Shock window has expired. The SHOCK field of the INT_DUR2 register is set to 11b, therefore the Shock time is 57.7 ms (= 3 * 8 / ODR_XL).

For interrupt generation, after the first tap recognition there must not be any slope data overthreshold during the Quiet time window. Furthermore, since the latch mode is disabled, the interrupt is kept high for the duration of the Quiet window. The QUIET field of the INT_DUR2 register is set to 11b, therefore the Quiet time is 28.8 ms (= 3 * 4 / ODR_XL).

For the maximum time between two consecutive detected taps, the DUR field of the INT_DUR2 register is set to 0111b, therefore the Duration time is 538.5 ms (= 7 * 32 / ODR_XL).

4.6 Activity/Inactivity recognition

The Activity/Inactivity recognition function allows reducing system power consumption and developing new smart applications.

When the Activity/Inactivity recognition function is activated, the LSM6DS33 device is able to automatically decrease the accelerometer sampling rate to 13 Hz, increasing the accelerometer ODR and bandwidth as soon as the wake-up interrupt event has been detected. This feature is applied to the accelerometer sensor only, regardless of the selected gyroscope power mode and ODR.

With this feature the system may be efficiently switched from low-power consumption to full performance and vice-versa depending on user-selectable acceleration events, thus ensuring power saving and flexibility.

The Activity/Inactivity recognition function is enabled by setting to 1 the INACTIVITY bit of the WAKE_UP_THS register.

The Activity/Inactivity recognition function uses the slope between two consecutive acceleration samples to detect the Activity/Inactivity event; the slope data is computed using the following formula:

\[\text{slope}(t_n) = \left[\frac{\text{acc}(t_n) - \text{acc}(t_{n-1})}{2} \right] \]
Interrupt generation

This function can be fully programmed by the user in terms of expected amplitude and timing of the slope data by means of a dedicated set of registers (Figure 17).

The unsigned threshold value is defined using the WK_THS[5:0] bits of a dedicated set of registers WAKE_UP_THS register; the value of 1 LSB of these 6 bits depends on the selected accelerometer full scale: 1 LSB = (FS_XL)/(2^5). The threshold is applied to both positive and negative slope data.

When a certain number of consecutive X,Y,Z slope data is smaller than the configured threshold, the ODR_XL[3:0] bits of the CTRL1_XL register are bypassed (Inactivity) and the accelerometer is internally set to 13 Hz although the content of CTRL1_XL is left untouched. The duration of the Inactivity status to be recognized is defined by the SLEEP_DUR[3:0] bits of the WAKE_UP_DUR register: 1 LSB corresponds to 512*ODR_XL time, where ODR_XL is the accelerometer output data rate.

When the Inactivity status is detected, the interrupt is set high for 1/ODR_XL[s] period then it is automatically deasserted.

When a certain number of consecutive slope data on one axis become bigger than the threshold, the CTRL1_XL register settings are immediately restored (Activity). The duration of the Activity status to be recognized is defined by the WAKE_DUR[1:0] bits of the WAKE_UP_DUR register: 1 LSB corresponds to 1*ODR_XL time, where ODR_XL is the accelerometer output data rate.

When the Activity status is detected, the interrupt is set high for 1/ODR_XL[s] period then it is automatically deasserted.

Once the Activity/Inactivity detection function is enabled, the status can be driven to the two interrupt pins by setting to 1 the INT1_INACT_STATE bit of the MD1_CFG register or the INT1_INACT_STATE bit of the MD2_CFG register; it can also be checked by reading the SLEEP_STATE_IA bit of the WAKE_UP_SRC register.

Figure 17. Activity/Inactivity recognition
The code provided below is a basic routine for Activity/Inactivity detection implementation.

1. Write 50h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 208 Hz, FS_XL = 2g
2. Write 42h into WAKE_UP_DUR // Set duration for Inactivity detection
 // Set duration for Activity detection
3. Write 42h into WAKE_UP_THS // Set Activity/Inactivity threshold
 // Enable Activity/Inactivity detection
4. Write 80h into MD1_CFG // Activity/Inactivity interrupt driven to INT1 pin

In this example the WK_THS field of the WAKE_UP_THS register is set to 000010b, therefore the Activity/Inactivity threshold is 62.5 mg (= 2 * FS_XL / 2^6).

Before Inactivity detection, the X,Y,Z slope data must be smaller than the configured threshold for a period of time defined by the SLEEP_DUR field of the WAKE_UP_DUR register: this field is set to 0010b, corresponding to 4.92 s (= 2 * 512 / ODR_XL). After this period of time has elapsed, the accelerometer ODR is internally set to 13 Hz.

The Activity status is detected and the CTRL1_XL register settings immediately restored if the slope data of (at least) one axis are bigger than the threshold for a period of time defined by the WAKE_DUR field of the WAKE_UP_DUR register: this field is set to 10b, corresponding to 9.62 ms (= 2 * 1 / ODR_XL).

4.7 Boot status

After the device is powered up, the LSM6DS33 performs a 20 ms boot procedure to load the trimming parameters. After the boot is completed, both the accelerometer and the gyroscope are automatically configured in Power-Down mode.

After power-up, the trimming parameters can be re-loaded by setting to 1 the BOOT bit of the CTRL3_C register.

No toggle of the device power lines is required and the content of the device control registers is not modified, so the device operating mode doesn’t change after boot. If the reset to the default value of the control registers is required, it can be performed by setting to 1 the SW_RESET bit of the CTRL3_C register.

While the boot is running, the EV_BOOT bit of the STATUS_REG register is set high; at the end of the boot procedure, this bit is set low again. The boot status signal can also be driven to the INT1 interrupt pin by setting to 1 the INT1_BOOT bit of the INT1_CTRL register.
5 Android embedded functions

The LSM6DS33 device implements in hardware the sensor-related functions specified in Android L; specific IP blocks with negligible power consumption and high-level performance implement the following functions using only the accelerometer:

- Pedometer functions (step detector and step counter);
- Significant motion;
- Tilt;
- Time stamp.

All these functions work at 26 Hz, so the accelerometer ODR must be set at 26 Hz or higher values.

5.1 Pedometer functions: step detector and step counter

A specific IP block of the LSM6DS33 device is dedicated to pedometer functions: the step detector and the step counter.

Pedometer functions work at 26 Hz, so the accelerometer ODR must be set at 26 Hz or higher values.

In order to enable the pedometer functions it is necessary to set to 1 both the FUNC_EN bit of the CTRL10_C register and the PEDO_EN bit of the TAP_CFG register.

The step detector functionality generates an interrupt every time a step is recognized. In case of interspersed step sessions, 7 consecutive steps have to be detected before the first interrupt generation (debounce functionality) in order to avoid false step detections.

This interrupt signal can be driven to the INT1 interrupt pin by setting to 1 the INT1_STEP_DETECTOR bit of the INT1_CTRL register; it can also be checked by reading the STEP_DETECTED bit of the FUNC_SRC register.

Instead of generating an interrupt every time a step is recognized, it is possible to generate it if at least one step is detected within a certain time period. This time period is defined by setting a value higher than 00h in the STEP_COUNT_DELTA register. It is necessary to set the TIMER_EN bit of the TAP_CFG register to 1 (to enable the timer) and the TIMER_HR bit of the WAKE_UP_DUR register to 0 when using this feature; in this case, 1 LSB of the value of the STEP_COUNT_DELTA register corresponds to 1.6384 seconds. This interrupt signal can be driven to the INT2 interrupt pin by setting to 1 the INT2_STEP_DELTA bit of the INT2_CTRL register; it can also be checked by reading the STEP_COUNT_DELTA_IA bit of the FUNC_SRC register.

The step counter indicates the number of steps detected by the step detector algorithm after the pedometer function has been enabled. The step count is given by the concatenation of the STEP_COUNTER_H and STEP_COUNTER_L registers and it is represented as a 16-bit unsigned number.

The step count is not reset to zero when the accelerometer is configured in Power-Down or the pedometer is disabled; it can be reset to zero by setting the PEDO_RST_STEP bit of the CTRL10_C register to 1. After the counter resets, the PEDO_RST_STEP bit is not automatically set back to 0.
The Step Counter overflow signal can be driven to the INT2 interrupt pin by setting to 1 the INT2_STEP_COUNT_OV bit of the INT2_CTRL register: in this case, when the step count reaches the 2^{16} value, an interrupt signal is generated on the INT2 pin and the step count has to be reset to zero by setting to 1 the PEDO_RST_STEP bit.

If latch mode is disabled (LIR bit of TAP_CFG is set to 0), the interrupt signal generated by the pedometer functions is pulsed: the duration of the pulse observed on the interrupt pins is about 60 µs; the duration of the pulse observed on the bits STEP_COUNT_DELTA_IA, STEP_DETECTED_IA and STEP_OVERFLOW of the FUNC_SRC register is 1/26 Hz.

If latch mode is enabled (LIR bit of TAP_CFG is set to 1) and the interrupt signal is driven to the interrupt pins, once a step has occurred, a reading of the FUNC_SRC register clears the request on both the pins and the STEP_COUNT_DELTA_IA, STEP_DETECTED_IA and STEP_OVERFLOW bits of the FUNC_SRC register, and the device is ready to recognize the next step. If latch mode is enabled but the interrupt signal is not driven to the interrupt pins, the interrupt signal observed on the bits of the FUNC_SRC register is pulsed, with a fixed duration of 1/26 Hz.

Step counter time stamp information is available in the STEP_TIMESTAMP_H and STEP_TIMESTAMP_L registers: when a step is detected, the value of the TIMESTAMP_REG2 register is copied in STEP_TIMESTAMP_H, and the value of the TIMESTAMP_REG1 register is copied in STEP_TIMESTAMP_L, providing the time stamp information of this step. For more details about LSM6DS33 time stamp counter and TIMESTAMP_REG2/TIMESTAMP_REG1, see Section 5.4.

The step counter time stamp resolution depends on the value of the TIMER_HR bit of the WAKE_UP_DUR register: when this bit is set to 0, 1 LSB of the time step count corresponds to 1638.4 ms; when this bit is set to 1, 1 LSB of the time step count corresponds to 6.4 ms.

Step counter data can be stored in FIFO as a third data set along with time stamp data (see Section 6.9 for more details).

Hereafter a basic SW routine which shows how to enable the pedometer functions:

1. Write 20h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 26 Hz, FS_XL = 2g
2. Write 3Ch into CTRL10_C // Enable embedded functions
3. Write 40h into TAP_CFG // Enable pedometer algorithm
4. Write 80h into INT1_CTRL // Step Detector interrupt driven to INT1 pin

The interrupt signal is generated when a step is recognized and the step count is available by reading the STEP_COUNTER_H / STEP_COUNTER_L registers.

5.2 Significant motion

The Significant Motion function generates an interrupt when a ‘significant motion’, that could be due to a change in user location, is detected: in the LSM6DS33 device this function has been implemented in hardware using only the accelerometer.

The Significant Motion functionality can be used in location-based applications in order to receive a notification indicating when the user is changing location.
In order to enable Significant Motion detection it is necessary to set to 1 both the FUNC_EN bit and the SIGN_MOTION_EN bit of the CTRL10_C register.

The Significant Motion interrupt signal can be driven to the INT1 interrupt pin by setting to 1 the INT1_SIGN_MOTION bit of the INT1_CTRL register; it can also be checked by reading the SIGN_MOTION_IA bit of the FUNC_SRC register.

If latch mode is disabled (LIR bit of TAP_CFG is set to 0), the interrupt signal generated by the Significant Motion function is pulsed: the duration of the pulse observed on the interrupt pins is about 60 μs; the duration of the pulse observed on the SIGN_MOTION_IA bit of the FUNC_SRC register is 1/26 Hz.

If latch mode is enabled (LIR bit of TAP_CFG is set to 1) and the interrupt signal is driven to the interrupt pins, once a ‘significant motion’ is detected, a reading of the FUNC_SRC register clears the request on both the pins and the SIGN_MOTION_IA bit of the FUNC_SRC register, and the device is ready to recognize the next event. If latch mode is enabled but the interrupt signal is not driven to the interrupt pins, the interrupt signal observed on the SIGN_MOTION_IA bit of the FUNC_SRC register is pulsed, with a fixed duration of 1/26 Hz.

The embedded function register (accessible by setting to 1 the FUNC_CFG_EN bit of FUNC_CFG_ACCESS) used to configure the Significant Motion threshold parameter is the SM_THS register. The SM_THS_[7:0] bits of this register define the threshold value: it corresponds to the number of steps to be performed by the user upon a change of location before the Significant Motion interrupt is generated. It is expressed as an 8-bit unsigned value: the default value of this field is equal to 6 (= 00000110b).

The Significant Motion function works at 26 Hz, so the accelerometer ODR must be set at 26 Hz or higher values.

Hereafter a basic SW routine which shows how to enable the significant motion detection function:

1. Write 80h into FUNC_CFG_ADDRESS // Enable access to embedded functions registers
2. Write 08h into SM_THS // Set Significant Motion threshold
3. Write 00h into FUNC_CFG_ADDRESS // Disable access to embedded functions registers
4. Write 20h into CTRL1_XL // Turn-on the accelerometer
 // ODR_XL = 26 Hz, FS_XL = 2g
5. Write 3Dh into CTRL10_C // Enable embedded functions
6. Write 40h into INT1_CTRL // Significant motion interrupt driven to INT1 pin

In this example the SM_THS_[7:0] bits of the SM_THS register are set to 00001000b, therefore the Significant Motion threshold is equal to 8.
5.3 Tilt

The Tilt function allows detecting when an activity change occurs (e.g. when a phone is in a front pocket and the user goes from sitting to standing or standing to sitting): in the LSM6DS33 device it has been implemented in hardware using only the accelerometer.

In order to enable the tilt detector it is necessary to set to 1 both the FUNC_EN bit of the CTRL10_C register and the TILT_EN bit of the TAP_CFG register.

If the device is configured for tilt event detection, an interrupt is generated when the device is tilted by an angle greater than 35 degrees from the start position. The start position is defined as the position of the device when the tilt detection is enabled or the position of the device when the last Tilt interrupt was generated.

After this function is enabled, for the generation of the first Tilt interrupt the device should be continuously tilted by an angle greater than 35 degrees since start position for a period of time of 2 seconds. After the first Tilt interrupt is generated, the Tilt interrupt signal is set high as soon as the device is tilted by an angle greater than 35 degrees from the position of the device corresponding to the last interrupt detection (no need to wait 2 seconds).

This interrupt signal can be driven to the two interrupt pins by setting to 1 the INT1_TILT bit of the MD1_CFG register or the INT2_TILT bit of the MD2_CFG register; it can also be checked by reading the TILT_IA bit of the FUNC_SRC register.

If latch mode is disabled (LIR bit of TAP_CFG is set to 0), the interrupt signal generated by the Tilt function is pulsed: the duration of the pulse observed on the interrupt pins is about 60 μs; the duration of the pulse observed on the TILT_IA bit of FUNC_SRC register is 1/26 Hz.

If latch mode is enabled (LIR bit of TAP_CFG is set to 1) and the interrupt signal is driven to the interrupt pins, once a tilt is detected, a reading of the FUNC_SRC register clears the request on both the pins and the TILT_IA bit of FUNC_SRC register, and the device is ready to recognize the next tilt event. If latch mode is enabled but the interrupt signal is not driven to the interrupt pins, the interrupt signal observed on the TILT_IA bit of the FUNC_SRC register is pulsed, with a fixed duration of 1/26 Hz.

The tilt function works at 26 Hz, so the accelerometer ODR must be set at 26 Hz or higher values.

Hereafter a basic SW routine which shows how to enable the tilt detection function:

1. Write 20h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 26 Hz, FS_XL = 2g
2. Write 3Ch into CTRL10_C // Enable embedded functions
3. Write 20h into TAP_CFG // Enable tilt detection
4. Write 02h into MD1_CFG // Tilt detector interrupt driven to INT1 pin
5.4 Time stamp

Together with sensor data the LSM6DS33 device can provide time stamp information. If both the accelerometer and the gyroscope are in Power-Down mode, the time stamp counter doesn’t work.

To enable this functionality the TIMER_EN bit of the TAP_CFG register has to be set to 1: the time step count is given by the concatenation of the TIMESTAMP_REG2 & TIMESTAMP_REG1 & TIMESTAMP_REG0 registers and is represented as a 24-bit unsigned number.

The time stamp resolution can be configured using the TIMER_HR bit of the WAKE_UP_DUR register: when this bit is set to 0, 1 LSB of time step count corresponds to 6.4 ms; when this bit is set to 1, 1 LSB of time step count corresponds to 25 μs.

When the maximum value 16777215 LSB (corresponding to FFFFFFh) is reached and low resolution (TIMER_HR = 0) is used, the counter is automatically reset to 000000h and continues to count. When the maximum value is reached and high resolution (TIMER_HR = 1) is used, the counter is not automatically reset to 0 and freezes at FFFFFFh. In any case, the timer count can be reset to zero at any time by writing the reset value AAh in the TIMESTAMP_REG2 register.

An interrupt signal is generated when the timer step count reaches the value of 16776960 LSB (corresponding to FFFF00h). This interrupt signal can be driven to the INT1 pin by setting to 1 the INT1_TIMER bit of the MD1_CFG register. Once the interrupt pin is asserted, it must be reset to zero by writing AAh in the TIMESTAMP_REG2 register.

The time stamp count can be stored in FIFO as a third data set along with the step counter data (see Section 6.9 for details).

A basic SW routine to enable the time stamp counter is shown below.

1. Write 50h into CTRL1_XL // Turn on the accelerometer
 // ODR_XL = 208 Hz, FS_XL = 2g
2. Write 80h into TAP_CFG // Enable time stamp count
3. Write 10h into WAKE_UP_DUR // Time stamp resolution = 25us
4. Write 01h into MD1_CFG // End counter interrupt driven to INT1 pin
6 First-in first-out (FIFO) buffer

In order to limit intervention by the host processor and facilitate post-processing data for event recognition, the LSM6DS33 embeds an 8 kbyte first-in first-out buffer (FIFO).

The FIFO can be configured to store the following data:

- gyroscope sensor data;
- accelerometer sensor data;
- step counter and time stamp data;
- temperature sensor data.

Saving data in the FIFO buffer is based on three ‘FIFO data set’ consisting of 6 bytes each:

- The 1st FIFO data set is reserved for gyroscope data;
- The 2nd FIFO data set is reserved for accelerometer data;
- The 3rd FIFO data set can be alternately associated to the step counter and time stamp info, or to the temperature sensor data.

All these data sets can be stored in FIFO at different ODRs, by setting the decimation factors in the FIFO_CTRL3 and FIFO_CTRL4 registers. Decimation factors are also used to select which FIFO data sets have to be stored in FIFO.

Five different FIFO operating modes can be chosen through the FIFO_MODE_[2:0] bits of the FIFO_CTRL5 register:

- Bypass mode;
- FIFO mode;
- Continuous mode;
- Continuous-to-FIFO mode;
- Bypass-to-Continuous mode.

Data are retrieved from the FIFO through two dedicated registers: FIFO_DATA_OUT_L and FIFO_DATA_OUT_H. In this way, data can be read either from the FIFO (at a slower ODR) or from the device output registers (at the normal ODR).

To monitor the FIFO status (full, empty, number of sample stored, etc), four dedicated registers are available: FIFO_STATUS1, FIFO_STATUS2, FIFO_STATUS3, FIFO_STATUS4.

Programmable FIFO thresholds can be set in FIFO_CTRL1 and FIFO_CTRL2 using the FTH [11:0] bits.

FIFO full, FIFO threshold and FIFO overrun events can be enabled to generate dedicated interrupts on the two interrupt pins (INT1 and INT2) through the INT1_FULL_FLAG, INT1_FTH and INT1_OVR bits of the INT1_CTRL register, and through the INT2_FULL_FLAG, INT2_FTH and INT2_OVR bits of the INT2_CTRL register.

In order to increase the number of samples which can be stored in the FIFO, it is also possible to store (as 1st FIFO data set) only the 8 most significant bits of the accelerometer and gyroscope data by setting the bit ONLY_HIGH_DATA in the FIFO_CTRL4 register.

When the TIMER_PEDO_FIFO_DRDY bit of the FIFO_CTRL2 register is set to 0, writing data in the FIFO is triggered by the accelerometer/gyroscope data-ready. If the TIMER_PEDO_FIFO_DRDY bit is set to 1, the data are stored in FIFO every time a step is detected.
6.1 FIFO registers

The FIFO buffer is managed by:

- five control registers (from FIFO_CTRL1 to FIFO_CTRL5);
- four status registers (from FIFO_STATUS1 to FIFO_STATUS4);
- two data output registers (FIFO_DATA_OUT_L and FIFO_DATA_OUT_H);
- some additional bits to enable threshold usage (STOP_ON_FTH) and route FIFO full, threshold or overrun events to the two interrupt lines (bits: INT1_FULL_FLAG, INT2_FULL_FLAG, INT1_FTH, INT2_FTH, INT1_FIFO_OVR, INT2_FIFO_OVR).

6.1.1 FIFO_CTRL1 (06h)

The FIFO_CTRL1 register contains the lower part of the 12-bit FIFO threshold level. For the complete threshold level configuration, consider also the FTH_[11:8] bits of the FIFO_CTRL2 register. The value of the FIFO threshold level is referred to data having 16-bit format.

The FIFO watermark flag (FTH bit in FIFO_STATUS2 register) rises when the number of bytes stored in the FIFO is equal to or higher than the threshold level.

In order to limit the FIFO depth to the watermark level, the STOP_ON_FTH bit must be set to 1 in the CTRL4_C register.

<table>
<thead>
<tr>
<th>Table 33. FIFO_CTRL1 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7 b6 b5 b4 b3 b2 b1 b0</td>
</tr>
<tr>
<td>FTH_7 FTH_6 FTH_5 FTH_4 FTH_3</td>
</tr>
<tr>
<td>FTH_2 FTH_1 FTH_0</td>
</tr>
</tbody>
</table>

6.1.2 FIFO_CTRL2 (07h)

- TIMER_PEDO_FIFO_EN enables step counter and time stamp data to be stored as the 3rd FIFO data set. The content of the 6 bytes stored in the FIFO when this bit is set to 1 is described in Section 6.8.
- TIMER_PEDO_FIFO_DRDY. When this bit is set to 1, all the data are stored in the FIFO every time a new step has been detected by the step counter. See Section 6.3 for details.
- FTH_[11:8] contains the upper part of the FIFO threshold level. For the complete threshold level configuration, consider also the FTH_[7:0] bits in the FIFO_CTRL1 register.

<table>
<thead>
<tr>
<th>Table 34. FIFO_CTRL2 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7 b6 b5 b4 b3 b2 b1 b0</td>
</tr>
<tr>
<td>TIMER_PEDO_FIFO_EN</td>
</tr>
<tr>
<td>TIMER_PEDO_FIFO_DRDY</td>
</tr>
<tr>
<td>0 0 FTH_11 FTH_10 FTH_9 FTH_8</td>
</tr>
</tbody>
</table>

6.1.3 FIFO_CTRL3 (08h)

The FIFO_CTRL3 register contains the accelerometer and gyroscope FIFO decimation factors, used to choose if the data of these sensors have to be stored in the FIFO and at which rate they are stored.

When the DEC_FIFO_GYRO[2:0] bits are set to 000b, the 1st FIFO data set (reserved for gyroscope data) is not stored in the FIFO. When the DEC_FIFO_XL[2:0] bits are set to 000b, the 2nd FIFO data set (reserved for accelerometer data) is not stored in the FIFO.

Note: It’s required to set at least one of the three decimation factors to 1 (no decimation).

Table 35. FIFO_CTRL3 register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>DEC_FIFO_GYRO2</td>
<td>DEC_FIFO_GYRO1</td>
<td>DEC_FIFO_GYRO0</td>
<td>DEC_FIFO_XL2</td>
<td>DEC_FIFO_XL1</td>
<td>DEC_FIFO_XL0</td>
</tr>
</tbody>
</table>

Table 36. Gyroscope FIFO decimation setting

<table>
<thead>
<tr>
<th>DEC_FIFO_GYRO [2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Gyroscope sensor not in FIFO</td>
</tr>
<tr>
<td>001</td>
<td>No decimation</td>
</tr>
<tr>
<td>010</td>
<td>Decimation with factor 2</td>
</tr>
<tr>
<td>011</td>
<td>Decimation with factor 3</td>
</tr>
<tr>
<td>100</td>
<td>Decimation with factor 4</td>
</tr>
<tr>
<td>101</td>
<td>Decimation with factor 8</td>
</tr>
<tr>
<td>110</td>
<td>Decimation with factor 16</td>
</tr>
<tr>
<td>111</td>
<td>Decimation with factor 32</td>
</tr>
</tbody>
</table>

Table 37. Accelerometer FIFO decimation setting

<table>
<thead>
<tr>
<th>DEC_FIFO_XL [2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Accelerometer sensor not in FIFO</td>
</tr>
<tr>
<td>001</td>
<td>No decimation</td>
</tr>
<tr>
<td>010</td>
<td>Decimation with factor 2</td>
</tr>
<tr>
<td>011</td>
<td>Decimation with factor 3</td>
</tr>
<tr>
<td>100</td>
<td>Decimation with factor 4</td>
</tr>
<tr>
<td>101</td>
<td>Decimation with factor 8</td>
</tr>
<tr>
<td>110</td>
<td>Decimation with factor 16</td>
</tr>
<tr>
<td>111</td>
<td>Decimation with factor 32</td>
</tr>
</tbody>
</table>
6.1.4 FIFO_CTRL4 (09h)

The FIFO_CTRL4 register contains the decimation factors used to define at which data rate the data associated to the 3rd FIFO data set are stored in the FIFO.

When the TIMER_PEDO_DEC_FIFO[2:0] bits are set to 000b, the 3rd FIFO data set is not stored in the FIFO.

Note: It’s required to set at least one of the three decimation factors to 1 (no decimation).

The FIFO_CTRL4 register also contains the bit ONLY_HIGH_DATA, which allows storing in the FIFO only the upper part (Most Significant Byte) of accelerometer and gyroscope data, in order to increase the maximum number of accelerometer and gyroscope samples in the FIFO. See Section 6.7 for more details about this functionality.

Table 38. FIFO_CTRL4 register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ONLY_HIGH_DATA</td>
<td>TIME_PEDO_DEC_FIFO2</td>
<td>TIME_PEDO_DEC_FIFO1</td>
<td>TIME_PEDO_DEC_FIFO0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 39. 3rd FIFO data set decimation setting

<table>
<thead>
<tr>
<th>TIMER_PEDO_DEC_FIFO [2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>3rd FIFO data set not in FIFO</td>
</tr>
<tr>
<td>001</td>
<td>No decimation</td>
</tr>
<tr>
<td>010</td>
<td>Decimation with factor 2</td>
</tr>
<tr>
<td>011</td>
<td>Decimation with factor 3</td>
</tr>
<tr>
<td>100</td>
<td>Decimation with factor 4</td>
</tr>
<tr>
<td>101</td>
<td>Decimation with factor 8</td>
</tr>
<tr>
<td>110</td>
<td>Decimation with factor 16</td>
</tr>
<tr>
<td>111</td>
<td>Decimation with factor 32</td>
</tr>
</tbody>
</table>

6.1.5 FIFO_CTRL5 (0Ah)

The FIFO_CTRL5 register contains the FIFO operating mode bits (FIFO_MODE[2:0]) and the FIFO output data rate bits (ODR_FIFO[3:0]).

FIFO operating modes (Table 42) are described in Section 6.2.

When the internal trigger (accelerometer/gyroscope data-ready) is used, the ODR_FIFO[3:0] bits define the maximum data rate at which data are stored in FIFO. Data can be stored in FIFO at a lower data rate using the FIFO decimation factors.

For more information on how to configure the FIFO trigger and the FIFO ODR see Section 6.3.
Table 40. FIFO_CTRL5 register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ODR _FIFO_3</td>
<td>ODR _FIFO_2</td>
<td>ODR _FIFO_1</td>
<td>ODR _FIFO_0</td>
<td>FIFO _MODE_2</td>
<td>FIFO _MODE_1</td>
<td>FIFO _MODE_0</td>
</tr>
</tbody>
</table>

Table 41. FIFO ODR selection setting

<table>
<thead>
<tr>
<th>ODR_FIFO [3:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>FIFO disabled</td>
</tr>
<tr>
<td>0001</td>
<td>FIFO ODR is set to 10 Hz</td>
</tr>
<tr>
<td>0010</td>
<td>FIFO ODR is set to 25 Hz</td>
</tr>
<tr>
<td>0011</td>
<td>FIFO ODR is set to 50 Hz</td>
</tr>
<tr>
<td>0100</td>
<td>FIFO ODR is set to 100 Hz</td>
</tr>
<tr>
<td>0101</td>
<td>FIFO ODR is set to 200 Hz</td>
</tr>
<tr>
<td>0110</td>
<td>FIFO ODR is set to 400 Hz</td>
</tr>
<tr>
<td>0111</td>
<td>FIFO ODR is set to 800 Hz</td>
</tr>
<tr>
<td>1000</td>
<td>FIFO ODR is set to 1600 Hz</td>
</tr>
<tr>
<td>1001</td>
<td>FIFO ODR is set to 3300 Hz</td>
</tr>
<tr>
<td>1010</td>
<td>FIFO ODR is set to 6600 Hz</td>
</tr>
</tbody>
</table>

Table 42. FIFO mode selection

<table>
<thead>
<tr>
<th>FIFO_MODE [2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Bypass mode. FIFO disabled.</td>
</tr>
<tr>
<td>001</td>
<td>FIFO mode. Stops collecting data when FIFO is full.</td>
</tr>
<tr>
<td>010</td>
<td>Reserved</td>
</tr>
<tr>
<td>011</td>
<td>Continuous mode until trigger is deasserted, then FIFO mode.</td>
</tr>
<tr>
<td>100</td>
<td>Bypass mode until trigger is deasserted, then Continuous mode.</td>
</tr>
<tr>
<td>101</td>
<td>Reserved</td>
</tr>
<tr>
<td>110</td>
<td>Continuous mode. If the FIFO is full, the new sample overwrites the older one.</td>
</tr>
<tr>
<td>111</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
6.1.6 FIFO_STATUS1 (3Ah)

The FIFO_STATUS1 register, together with the FIFO_STATUS2 register, provides information about the number of samples stored in the FIFO. Each sample is represented as 16-bit data.

<table>
<thead>
<tr>
<th>Table 43. FIFO_STATUS1 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7</td>
</tr>
<tr>
<td>DIFF_FIFO_7</td>
</tr>
</tbody>
</table>

6.1.7 FIFO_STATUS2 (3Bh)

The FIFO_STATUS2 register, together with the FIFO_STATUS1 register, provides information about the number of samples stored in the FIFO and about the current status (threshold, overrun, full, empty) of the FIFO buffer.

<table>
<thead>
<tr>
<th>Table 44. FIFO_STATUS2 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7</td>
</tr>
<tr>
<td>FTH</td>
</tr>
</tbody>
</table>

- **FTH** represents the watermark status. This bit is set high when the number of bytes stored in the FIFO is equal to or higher than the watermark level (each sample is represented as 16-bit data). The watermark status can be driven to the two interrupt pins by setting to 1 the INT1_FTH bit of the INT1_CTRL register or the INT2_FTH bit of the INT2_CTRL register.
- **FIFO_OVER_RUN** is set high when the FIFO is completely filled and at least one sample has already been overwritten to store the new data. This signal can be driven to the two interrupt pins by setting to 1 the INT1_FIFO_OVR bit of the INT1_CTRL register or the INT2_FIFO_OVR bit of the INT2_CTRL register.
- **FIFO_FULL** is set high when the next set of data that will be stored in FIFO will make the FIFO full. The next stored sample will replace the oldest FIFO sample. This signal can be driven to the two interrupt pins by setting to 1 the INT1_FULL_FLAG bit of the INT1_CTRL register or the INT2_FULL_FLAG bit of the INT2_CTRL register.
- **FIFO_EMPTY** is set high when the FIFO is empty.
- **DIFF_FIFO_[11:8]** contains the upper part of the number of unread words (16-bit data) stored in the FIFO. The lower part is represented by the DIFF_FIFO_[7:0] bits in FIFO_STATUS1. The value of the DIFF_FIFO_[11:0] field corresponds to the number of samples in the FIFO (each sample is represented as 16-bit data). When a FIFO full event occurs (FIFO_FULL bit is set high), the value of the DIFF_FIFO_[11:0] field is set to 0.

Register content is updated synchronously to the FIFO write and read operation, as illustrated in Table 45.
6.1.8 FIFO_STATUS3 (3Ch)

The FIFO_STATUS3 register, together with FIFO_STATUS4 register, specifies which axis of which sensor data will be read at the next reading. For more information on how to retrieve data from the FIFO see Section 6.5.

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO_PATTERN_7</td>
<td>FIFO_PATTERN_6</td>
<td>FIFO_PATTERN_5</td>
<td>FIFO_PATTERN_4</td>
<td>FIFO_PATTERN_3</td>
<td>FIFO_PATTERN_2</td>
<td>FIFO_PATTERN_1</td>
<td>FIFO_PATTERN_0</td>
</tr>
</tbody>
</table>

6.1.9 FIFO_STATUS4 (3Dh)

The FIFO_STATUS4 register, together with the FIFO_STATUS3 register, specifies which axis of which sensor data will be read at the next reading. For more information on how to retrieve data from the FIFO see Section 6.5.

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO_PATTERN_9</td>
<td>FIFO_PATTERN_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 45. FIFO_STATUS2 behavior

<table>
<thead>
<tr>
<th>FIFO_OVER_RUN</th>
<th>FIFO_FULL</th>
<th>FIFO_EMPTY</th>
<th>DIFF_FIFO_[11:0]</th>
<th>Number of FIFO samples</th>
<th>FIFO trigger timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>t₀</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>t₁</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>t₂</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4095</td>
<td>4095</td>
<td>t₉ - 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4096</td>
<td>t₉</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4096 (old sample overwritten)</td>
<td>t₉ + 1</td>
</tr>
</tbody>
</table>

Table 46. FIFO_STATUS3 register

Table 47. FIFO_STATUS4 register
6.1.10 FIFO_DATA_OUT_L (3Eh)

The FIFO_DATA_OUT_L register is the least significant byte of the FIFO output data. The most significant byte is stored in the FIFO_DATA_OUT_H register. For more information on how to retrieve data from the FIFO, see Section 6.4.

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA_OUT_FIFO_L_7</td>
<td>DATA_OUT_FIFO_L_6</td>
<td>DATA_OUT_FIFO_L_5</td>
<td>DATA_OUT_FIFO_L_4</td>
<td>DATA_OUT_FIFO_L_3</td>
<td>DATA_OUT_FIFO_L_2</td>
<td>DATA_OUT_FIFO_L_1</td>
<td>DATA_OUT_FIFO_L_0</td>
</tr>
</tbody>
</table>

6.1.11 FIFO_DATA_OUT_H (3Fh)

The FIFO_DATA_OUT_H register is the most significant byte of the FIFO output data. The least significant byte is stored in the FIFO_DATA_OUT_L register. For more information on how to retrieve data from the FIFO, see Section 6.4.

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA_OUT_FIFO_H_7</td>
<td>DATA_OUT_FIFO_H_6</td>
<td>DATA_OUT_FIFO_H_5</td>
<td>DATA_OUT_FIFO_H_4</td>
<td>DATA_OUT_FIFO_H_3</td>
<td>DATA_OUT_FIFO_H_2</td>
<td>DATA_OUT_FIFO_H_1</td>
<td>DATA_OUT_FIFO_H_0</td>
</tr>
</tbody>
</table>

6.2 FIFO modes

The LSM6DS33 FIFO buffer can be configured to operate in five different modes selectable through the FIFO_MODE_[2:0] field of the FIFO_CTRL5 register. The available configurations ensure a high level of flexibility and extend the number of functions usable in application development.

Bypass, FIFO, Continuous, Continuous-to-FIFO and Bypass-to-Continuous modes are described in the following paragraphs.

6.2.1 Bypass mode

When Bypass mode is enabled, the FIFO is not used, the buffer content is cleared, and it remains empty until another mode is selected.

Bypass mode is selected when the FIFO_MODE_[2:0] bits are set to 000b. When this mode is enabled, the FIFO_STATUS2 register contains the value 10h (FIFO empty).

Bypass mode must be used in order to stop and reset the FIFO buffer when a different mode is operating. Note that placing the FIFO buffer in Bypass mode, the whole buffer content is cleared.
6.2.2 FIFO mode

In FIFO mode, the buffer continues filling until it becomes full. Then it stops collecting data and the FIFO content remains unchanged until a different mode is selected.

To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first set of data acquired must be discarded.

Follow these steps for FIFO mode configuration (if accelerometer/gyroscope data-ready is used as FIFO trigger):

1. Choose the decimation factor for each sensor through the decimation bits in the FIFO_CTRL3 and FIFO_CTRL4 registers (see Section 6.3 for details);
2. Choose the FIFO ODR through the ODR_FIFO_[3:0] bits in the FIFO_CTRL5 register;
3. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL5 register to 001b to enable the FIFO mode.

When this mode is selected, the FIFO starts collecting data. The FIFO_STATUS1 and FIFO_STATUS2 registers are updated according to the number of samples stored.

When the FIFO is full, the FIFO_FULL bit of the FIFO_STATUS2 register will be set to 1. Data can be retrieved after the FIFO_FULL event, by reading the FIFO_DATA_OUT_L and FIFO_DATA_OUT_H registers for the number of times specified by the DIFF_FIFO_[11:0] bits of the FIFO_STATUS1 and FIFO_STATUS2 registers.

Using the FTH bit of the FIFO_STATUS2 register, data can also be retrieved when a threshold level (FTH_[11:0] in FIFO_CTRL1 and FIFO_CTRL2 registers) is reached, if the application requires a lower number of samples in the FIFO.

If the STOP_ON_FTH bit of the CTRL4_C register is set to 1, the FIFO size is limited to the value of the FTH_[11:0] bits in the FIFO_CTRL1 and FIFO_CTRL2 registers: in this case, the FIFO_FULL bit of the FIFO_STATUS2 register is set high when the number of samples in FIFO will reach or exceed the FTH_[11:0] value on the next FIFO write operation.

Communication speed is not very important in FIFO mode because the data collection is stopped and there is no risk of overwriting data already acquired. Before restarting the FIFO mode, it is necessary to set to Bypass mode first, in order to completely clear the FIFO content.

Figure 18 shows an example of FIFO mode usage. In the example X-Y-Z data (green cells indicate the sample number) from just one sensor are stored in the FIFO. In these conditions, the number of samples stored is 4095: when the FIFO buffer is completely filled the FIFO_FULL bit of the FIFO_STATUS2 register is set high.
6.2.3 Continuous mode

In Continuous mode, the FIFO continues filling. When the buffer is full, the FIFO index restarts from the beginning, and older data are replaced by the new data. The oldest values continue to be overwritten until a read operation frees FIFO slots. The host processor’s reading speed is important in order to free slots faster than new data is made available. To stop this configuration, Bypass mode must be selected.

Follow these steps for Continuous mode configuration (if accelerometer/gyroscope data-ready is used as FIFO trigger):

1. Choose the decimation factor for each sensor through the decimation bits in the FIFO_CTRL3 and FIFO_CTRL4 registers (see Section 6.3 for details);
2. Choose the FIFO ODR through the ODR_FIFO_[3:0] bits in the FIFO_CTRL5 register;
3. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL5 register to 110b to enable FIFO Continuous mode.

When this mode is selected, the FIFO collects data continuously. The FIFO_STATUS1 and FIFO_STATUS2 registers are updated according to the number of samples stored.

The FIFO_FULL bit in the FIFO_STATUS2 register indicates when there is no more space available for other data. The FIFO_OVER_RUN bit in the FIFO_STATUS2 register indicates when at least one sample has been overwritten to store the new data.

Data can be retrieved after the FIFO_FULL event, by reading the FIFO_DATA_OUT_L and FIFO_DATA_OUT_H registers for a number of times specified by the DIFF_FIFO_[11:0] bits in the FIFO_STATUS1 and FIFO_STATUS2 registers.

Using the FTH bit of the FIFO_STATUS2 register, data can also be retrieved when a threshold level (FTH_[11:0] in FIFO_CTRL1 and FIFO_CTRL2 registers) is reached.

If the STOP_ON_FTH bit of CTRL4_C register is set to 1, the FIFO size is limited to the value of the FTH_[11:0] bits in the FIFO_CTRL1 and FIFO_CTRL2 registers: in this case,
the FTH bit of the FIFO_STATUS2 register is set high when the number of samples in FIFO will reach or exceed the FTH_[11:0] value on the next FIFO write operation.

It is recommended to read faster than 1*ODR the number of samples stored in the FIFO equal to at least three times the number of the enabled data set, in order to free FIFO slots for the new data: this allows avoiding loss of data.

If the read procedure is not fast enough, three different cases can be observed:

1. FIFO sample set is read faster than 1*ODR: data are correctly retrieved because a free slot is made available before new data is generated.

2. FIFO sample set is read synchronous to 1*ODR: data are correctly retrieved because a free slot is made available before new data is generated but FIFO benefits are not exploited. This case is equivalent to reading data on the data-ready interrupt and does not reduce the intervention of the host processor compared to the standard accelerometer reading.

3. FIFO sample set is read slower than 1*ODR: in this case some data are lost because data reading is not fast enough to free slots for new data. The number of correctly recovered samples is related to the difference between the current ODR and the FIFO sample set reading rate.

Figure 19 shows an example of the Continuous mode usage. In the example, X-Y-Z data (green cells indicate the sample number) from just one sensor are stored in the FIFO. In these conditions, the number of samples stored is 4095. In this example the FIFO samples are read faster than 1 * ODR and no data is lost.
6.2.4 Continuous-to-FIFO mode

This mode is a combination of the Continuous and FIFO modes previously described. In Continuous-to-FIFO mode, the FIFO buffer starts operating in Continuous mode and switches to FIFO mode when an event condition occurs.

The event condition can be one of the following:
- Significant Motion: event detection has to be configured and the INT1_SIG_MOT bit of the INT1_CTRL register has to be set to 1;
- Tilt: event detection has to be configured and the INT2_TILT bit of the MD2_CFG register has to be set to 1;
- Step detection: event detection has to be configured and the INT1_STEP_DETECTOR bit of the INT1_CTRL register has to be set to 1;
- Single tap: event detection has to be configured and the INT2_SINGLE_TAP bit of the MD2_CFG register has to be set to 1;
- Double tap: event detection has to be configured and the INT2_DOUBLE_TAP bit of the MD2_CFG register has to be set to 1;
- Free-fall: event detection has to be configured and the INT2_FF bit of the MD2_CFG register has to be set to 1;
- Wake-up: event detection has to be configured and the INT2_WU bit of the MD2_CFG register has to be set to 1;
- 6D: event detection has to be configured and the INT2_6D bit of the MD2_CFG register has to be set to 1.

Continuous-to-FIFO mode is sensitive to the level of the interrupt signal and not to the edge, which means that if Continuous-to-FIFO is in FIFO mode and the interrupt condition disappears, the FIFO buffer returns to Continuous mode. It is recommended to latch the interrupt signal used as the FIFO event in order to avoid losing interrupt events (the interrupt signal has to be driven to the interrupt pin so that the latch function takes effect).

![Figure 20. Continuous-to-FIFO mode](image)
Follow these steps for Continuous-to-FIFO mode configuration (if the accelerometer/gyroscope data-ready is used as the FIFO trigger):

1. Configure one of the events as previously described;
2. Choose the decimation factor for each sensor through the decimation bits in the FIFO_CTRL3 and FIFO_CTRL4 registers (see Section 6.3 for details);
3. Choose the FIFO ODR through the ODR_FIFO_[3:0] bits in the FIFO_CTRL5 register;
4. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL5 register to 011b to enable FIFO Continuous-to-FIFO mode.

In Continuous-to-FIFO mode the FIFO buffer continues filling; when the buffer is full, the FIFO_FULL bit is set high.

If the STOP_ON_FTH bit of the CTRL4_C register is set to 1, the FIFO size is limited to the value of the FTH_[11:0] bits in the FIFO_CTRL1 and FIFO_CTRL2 registers: in this case, the FIFO_FULL bit of the FIFO_STATUS2 register is set high when the number of samples in FIFO will reach or exceed the FTH_[11:0] value on the next FIFO write operation.

When the trigger event occurs, two different cases can be observed:
1. If the FIFO buffer is already full (FIFO_FULL = 1), it stops collecting data at the first sample after the event trigger. The FIFO content is composed of the samples collected before the event.
2. If FIFO buffer is not full yet (initial transient), it continues filling until it becomes full (FIFO_FULL = 1) and then, if the trigger is still present, it stops collecting data.

Continuous-to-FIFO can be used in order to analyze the history of the samples which have generated an interrupt; the standard operation is to read the FIFO content when the FIFO mode is triggered and the FIFO buffer is full and stopped.

6.2.5 Bypass-to-Continuous mode

This mode is a combination of the Bypass and Continuous modes previously described. In Bypass-to-Continuous mode, the FIFO buffer starts operating in Bypass mode and switches to Continuous mode when a trigger condition occurs.

The event condition can be one of the following:

- **Significant Motion**: event detection has to be configured and the INT1_SIG_MOT bit of the INT1_CTRL register has to be set to 1;
- **Tilt**: event detection has to be configured and the INT2_TILT bit of the MD2_CFG register has to be set to 1;
- **Step detection**: event detection has to be configured and the INT1_STEP_DETECTOR bit of the INT1_CTRL register has to be set to 1;
- **Single tap**: event detection has to be configured and the INT2_SINGLE_TAP bit of MD2_CFG register has to be set to 1;
- **Double tap**: event detection has to be configured and the INT2_DOUBLE_TAP bit of the MD2_CFG register has to be set to 1;
- **Free-fall**: event detection has to be configured and the INT2_FF bit of the MD2_CFG register has to be set to 1;
- **Wake-up**: event detection has to be configured and the INT2_WU bit of the MD2_CFG register has to be set to 1;
- **6D**: event detection has to be configured and the INT2_6D bit of the MD2_CFG register has to be set to 1.
Bypass-to-Continuous mode is sensitive to the level of the interrupt signal and not to the edge, which means that if Bypass-to-Continuous is in Continuous mode and the interrupt condition disappears, the FIFO buffer returns to Bypass mode. It is recommended to latch the interrupt signal used as the FIFO event in order to avoid losing data (the interrupt signal has to be driven to the interrupt pin so that the latch function takes effect).

Follow these steps for Bypass-to-Continuous mode configuration (if the accelerometer / gyroscope data-ready is used as the FIFO trigger):

1. Configure one of the events as previously described;
2. Choose the decimation factor for each sensor through the decimation bits in the FIFO_CTRL3 and FIFO_CTRL4 registers (see Section 6.3 for details);
3. Choose the FIFO ODR through the ODR_FIFO_[3:0] bits in the FIFO_CTRL5 register.
4. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL5 register to 100b to enable FIFO Bypass-to-Continuous mode.

Once the trigger condition appears and the buffer switches to Continuous mode, the FIFO buffer continues filling. When the buffer is full, the FIFO_FULL bit is set high.

Bypass-to-Continuous can be used in order to start the acquisition when the configured interrupt is generated.
6.3 Setting the FIFO trigger, FIFO ODR and decimation factors

Writing data in the FIFO can be configured to be triggered by two different sources.

Figure 22. FIFO trigger signal selection

As described in Figure 22, the TIMER_PEDO_FIFO_DRDY bit of the FIFO_CTRL2 register is used for this purpose:

- if the TIMER_PEDO_FIFO_DRDY bit is set to 0, writing data in the FIFO is triggered by the accelerometer/gyroscope data-ready. The ODR_FIFO[3:0] bits of FIFO_CTRL5 define the maximum data rate at which data are stored in FIFO; the latter is limited to the maximum value between the accelerometer ODR (defined by the ODR_XL[3:0] bits of the CTRL1_XL register) and the gyroscope ODR (defined by the ODR_G[3:0] bits of the CTRL2_G register);
- if the TIMER_PEDO_FIFO_DRDY bit is set to 1, writing data in the FIFO is triggered by step detection (corresponding to the behavior of the STEP_DETECTED bit of the FUNC_SRC register): the data are stored in FIFO every time a step is detected.

Using the FIFO decimation factors, data can be stored in FIFO at a rate lower than the rate of the FIFO trigger signal. Three decimation factors can be configured, one for each FIFO data set:

- the DEC_FIFO_G[2:0] bits of the FIFO_CTRL3 register define if the gyroscope data (associated to the 1st FIFO data set) are stored in FIFO and the relative rate;
- the DEC_FIFO_XL[2:0] bits of the FIFO_CTRL3 register define if the accelerometer data (associated to the 2nd FIFO data set) are stored in FIFO and the relative rate;
- the TIMER_PEDO_DEC_FIFO[2:0] bits of the FIFO_CTRL4 register define if the data associated to the 3rd FIFO data set are stored in FIFO and the relative rate.

Note: It’s required to set at least one of the three decimation factors to 1 (no decimation).
When using the internal trigger (accelerometer/gyroscope data-ready), the recommended procedure to configure the FIFO trigger is the following:

1. Set the ODR_FIFO bits of the FIFO_CTRL5 register to the value corresponding to the maximum ODR between the gyroscope and accelerometer;
2. Set to 1 the decimation factor of the FIFO data set associated to the sensor having the maximum ODR.

6.4 Retrieving data from the FIFO

Note: When data are stored in the FIFO, the configuration must not be changed in order to be able to retrieve data correctly.

When FIFO is enabled and the mode is different from Bypass, reading the FIFO output registers (FIFO_DATA_OUT_L and FIFO_DATA_OUT_H) returns the oldest FIFO sample set. Whenever these registers are read, their content is moved to the SPI/I2C output buffer. FIFO slots are ideally shifted up one level in order to release room for a new sample, and the FIFO output registers load the current oldest value stored in the FIFO buffer.

The recommended way to retrieve data from the FIFO is the following:

1. Read the FIFO_STATUS1 and FIFO_STATUS2 registers to check how many words (16-bit data) are stored in the FIFO. This information is contained in the DIFF_FIFO_[11:0] bits.
2. Read the FIFO_STATUS3 and FIFO_STATUS4 registers. The FIFO_PATTERN_[9:0] bits allows understanding which sensor and which couple of bytes is being read (see Section 6.5 for more details).
3. Read the FIFO_DATA_OUT_L and FIFO_DATA_OUT_H registers to retrieve the oldest sample (16-bits format) in the FIFO. They are respectively the lower and the upper part of the oldest sample.

Note: If using the SPI interface, reading of the FIFO_STATUS registers (points 1 and 2 above) must be synchronized either on the data-ready interrupt or on the watermark interrupt signal; the interrupt signal has to be driven on an interrupt pin.

The entire FIFO content is retrieved by performing a certain number of read operations from the FIFO output registers until the buffer becomes empty (FIFO_EMPTY bit of FIFO_STATUS2 register is set high). Every other read operation returns the same value (the latest sample).

It is recommended to read all FIFO slots faster than 1*ODR, in order to avoid losing data. In this case, the number of read operations to be performed to empty the FIFO buffer corresponds to the value of the DIFF_FIFO_[11:0] bits.

The rounding function (see Section 3.6 for details) is automatically enabled when applying a multiple read operation to the FIFO output registers FIFO_DATA_OUT_L and FIFO_DATA_OUT_H.
6.5 FIFO pattern

Data are stored in the FIFO without any tag in order to maximize the number of samples stored. To understand which couple of data and which FIFO data set is going to be read, it is necessary to check the content of the FIFO_PATTERN_[9:0] bits in the FIFO_STATUS3 and FIFO_STATUS4 registers.

Data are written to the FIFO with a specific pattern (for example GyroX, GyroY, GyroZ, AccX, AccY, AccZ). This pattern changes depending on the ODRs and decimation factors assigned to the three FIFO data sets. The FIFO_PATTERN_[9:0] bits contain a number from 0 to the index of the last sample of the pattern, then the pattern is repeated in all FIFO content.

The first sequence of data stored in FIFO buffer contains the data of all the enabled FIFO data sets, from the first one to the third one. Then, data are repeated depending on the value of the decimation factor set for each FIFO data set.

The examples in the next sections explain how to use the information contained in the FIFO_PATTERN_[9:0] bits.

6.5.1 Example 1

Supposing the FIFO is storing data from the gyroscope and accelerometer at the same ODR:

- Gyroscope ODR = 104 Hz, Accelerometer ODR = 104 Hz.

If the internal trigger (accelerometer/gyroscope data-ready) is used, it's recommended to set the ODR_FIFO_[3:0] bits of the FIFO_CTRL5 register to 0100b in order to set the FIFO trigger ODR to 104 Hz.

Both the DEC_FIFO_GYRO[2:0] and the DEC_FIFO_XL[2:0] fields of the FIFO_CTRL3 register have to be set to 001b (no decimation).

The following data pattern is repeated every 6 samples (each sample is represented as 16-bit data):

- Gx Gy Gz XLx XLy XLz (Gyroscope and Accelerometer data)

The FIFO_PATTERN_[9:0] bits will contain a number from 0 to 5, as shown in Table 50.

<table>
<thead>
<tr>
<th>Time</th>
<th>FIFO_PATTERN_[9:0]</th>
<th>Next reading from FIFO output registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>0</td>
<td>Gx</td>
</tr>
<tr>
<td>t0</td>
<td>1</td>
<td>Gy</td>
</tr>
<tr>
<td>t0</td>
<td>2</td>
<td>Gz</td>
</tr>
<tr>
<td>t0</td>
<td>3</td>
<td>XLx</td>
</tr>
<tr>
<td>t0</td>
<td>4</td>
<td>XLY</td>
</tr>
<tr>
<td>t0</td>
<td>5</td>
<td>XLZ</td>
</tr>
</tbody>
</table>

Table 50. Example 1: FIFO_PATTERN_[9:0] bits and next reading
6.5.2 Example 2

Supposing the FIFO is storing data from the gyroscope and accelerometer at different ODRs:

- Gyroscope ODR = 208 Hz, Accelerometer ODR = 104 Hz.

If the internal trigger (accelerometer/gyroscope data-ready) is used, it's recommended to set the ODR_FIFO_[3:0] bits of the FIFO_CTRL5 register to 0101b in order to set the FIFO trigger ODR to 208 Hz.

The DEC_FIFO_GYRO[2:0] field of the FIFO_CTRL3 register has to be set to 001b (no decimation applied to gyroscope data) and the DEC_FIFO_XL[2:0] field has to be set to 010b (decimation with factor 2 applied to accelerometer data).

Since the gyroscope ODR is twice the accelerometer ODR, the following data pattern is repeated every 9 samples (each sample is represented as 16-bit data):

- Gx Gy Gz XLx XLy XLz Gx Gy Gz

The FIFO_PATTERN_[9:0] bits will contain a number from 0 to 8, as shown in Table 51.

<table>
<thead>
<tr>
<th>Time</th>
<th>FIFO_PATTERN_[9:0]</th>
<th>Next reading from FIFO output registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>0</td>
<td>Gx</td>
</tr>
<tr>
<td>t0</td>
<td>1</td>
<td>Gy</td>
</tr>
<tr>
<td>t0</td>
<td>2</td>
<td>Gz</td>
</tr>
<tr>
<td>t0</td>
<td>3</td>
<td>XLx</td>
</tr>
<tr>
<td>t0</td>
<td>4</td>
<td>XLy</td>
</tr>
<tr>
<td>t0</td>
<td>5</td>
<td>XLz</td>
</tr>
<tr>
<td>t1</td>
<td>6</td>
<td>Gx</td>
</tr>
<tr>
<td>t1</td>
<td>7</td>
<td>Gy</td>
</tr>
<tr>
<td>t1</td>
<td>8</td>
<td>Gz</td>
</tr>
</tbody>
</table>

6.5.3 Example 3

Supposing the FIFO is storing data from the gyroscope, accelerometer and timestamp/step count at different ODRs:

- Gyroscope ODR = 104 Hz, Accelerometer ODR = 208 Hz, Timestamp/Step Count ODR = 52 Hz.

If the internal trigger (accelerometer/gyroscope data-ready) is used, it's recommended to set the ODR_FIFO_[3:0] bits of the FIFO_CTRL5 register to 0101b in order to set the FIFO trigger ODR to 208 Hz.

The DEC_FIFO_GYRO[2:0] field of the FIFO_CTRL3 register has to be set to 001b (decimation with factor 2 applied to gyroscope data) and the DEC_FIFO_XL[2:0] field has to be set to 010b (no decimation applied to accelerometer data). Assuming that the time stamp/step count is associated to the 3rd FIFO data set, the TIMER_PEDO_DEC_FIFO[2:0] field of the FIFO_CTRL4 register has to be set to 100b (decimation with factor 4 applied to time stamp/step count data).
The following data pattern is repeated every 21 samples:

- Gx Gy Gz XLx XLy XLz S0 S1 S2 (gyroscope, accelerometer, time stamp/step count data - 9 samples)
- XLx XLy XLz (accelerometer data - 3 samples)
- Gx Gy Gz XLx XLy XLz (gyroscope and accelerometer data - 6 samples)
- XLx XLy XLz (accelerometer data - 3 samples)

The FIFO_PATTERN_[9:0] bits will contain a number from 0 to 20, as shown in Table 52.

<table>
<thead>
<tr>
<th>Time</th>
<th>FIFO_PATTERN_[9:0]</th>
<th>Next reading from FIFO output registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>0</td>
<td>Gx</td>
</tr>
<tr>
<td>t0</td>
<td>1</td>
<td>Gy</td>
</tr>
<tr>
<td>t0</td>
<td>2</td>
<td>Gz</td>
</tr>
<tr>
<td>t0</td>
<td>3</td>
<td>XLx</td>
</tr>
<tr>
<td>t0</td>
<td>4</td>
<td>XLy</td>
</tr>
<tr>
<td>t0</td>
<td>5</td>
<td>XLz</td>
</tr>
<tr>
<td>t0</td>
<td>6</td>
<td>S0</td>
</tr>
<tr>
<td>t0</td>
<td>7</td>
<td>S1</td>
</tr>
<tr>
<td>t0</td>
<td>8</td>
<td>S2</td>
</tr>
<tr>
<td>t1</td>
<td>9</td>
<td>XLx</td>
</tr>
<tr>
<td>t1</td>
<td>10</td>
<td>XLy</td>
</tr>
<tr>
<td>t1</td>
<td>11</td>
<td>XLz</td>
</tr>
<tr>
<td>t2</td>
<td>12</td>
<td>Gx</td>
</tr>
<tr>
<td>t2</td>
<td>13</td>
<td>Gy</td>
</tr>
<tr>
<td>t2</td>
<td>14</td>
<td>Gz</td>
</tr>
<tr>
<td>t2</td>
<td>15</td>
<td>XLx</td>
</tr>
<tr>
<td>t2</td>
<td>16</td>
<td>XLy</td>
</tr>
<tr>
<td>t2</td>
<td>17</td>
<td>XLz</td>
</tr>
<tr>
<td>t3</td>
<td>18</td>
<td>XLx</td>
</tr>
<tr>
<td>t3</td>
<td>19</td>
<td>XLy</td>
</tr>
<tr>
<td>t3</td>
<td>20</td>
<td>XLz</td>
</tr>
</tbody>
</table>
6.6 FIFO threshold

The FIFO threshold is a functionality of the LSM6DS33 FIFO which can be used to check when the number of samples in the FIFO reaches a defined threshold level.

The bits FTH_[11:0] in the FIFO_CTRL1 and FIFO_CTRL2 registers contain the threshold level. The resolution of the FTH_[11:0] field is two bytes (1 LSB = 2 Bytes, each sample is represented as 16-bit data). So, the user can select the desired level in a range between 0 and 4095.

The bit FTH in the FIFO_STATUS2 register represents the watermark status. This bit is set high if after the next FIFO write operation the number of samples in the FIFO reaches or exceeds the watermark level (each sample is represented as 16-bit data). When the FIFO is configured in Continuous mode or in Bypass-to-Continuous mode, the FTH bit can be used to catch when the number of samples in the FIFO reaches the threshold level. In the other FIFO modes, the FIFO_FULL bit in the FIFO_STATUS2 register has to be used for this purpose.

FIFO size can be limited to the threshold level by setting the STOP_ON_FTH bit in the CTRL4_C register to 1.

Figure 23. FIFO threshold (STOP_ON_FTH = 0)

FTH[11:0] = 21
STOP_ON_FTH = 0

Figure 23 shows an example of FIFO threshold level usage when just accelerometer (or gyroscope) data are stored. The STOP_ON_FTH bit set to 0 in the CTRL4_C register. The threshold level is set to 21 through the FTH[11:0] bits. The FTH bit of the FIFO_STATUS2 register rises after the level 21 has been reached (21 samples in the FIFO). Since the STOP_ON_FTH bit is set to 0, the FIFO will not stop at the 21st sample, but will keep storing data until the FIFO_FULL flag is set high.
Figure 24. FIFO threshold (STOP_ON_FTH = 1) in Continuous mode

![Diagram of FIFO threshold](image)

Figure 24 shows an example of FIFO threshold level usage in Continuous mode with the STOP_ON_FTH bit set to 1 in the CTRL4_C register. The threshold level is set to 21 through the FTH[11:0] bits. The FTH bit of the FIFO_STATUS2 register rises after the level 21 has been reached (21 samples in the FIFO). Since, the STOP_ON_FTH bit is set to 1, this time the FIFO will stop storing data at the 21st sample. So, it contains 21 samples, from 0 to 20.

6.7 High part of gyroscope and accelerometer data

It is possible to increase the number of samples stored in the FIFO by storing just the high part (8 bits) of gyroscope and accelerometer data.

To enable this feature, the bit ONLY_HIGH_DATA must be set to 1 in the FIFO_CTRL4 register. Gyroscope and accelerometer data will be written in the FIFO at the same ODR, in the order shown in Table 53:

<table>
<thead>
<tr>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyro_X_H</td>
<td>Accel_X_H</td>
<td>Gyro_Y_H</td>
<td>Accel_Y_H</td>
<td>Gyro_Z_H</td>
<td>Accel_Z_H</td>
</tr>
</tbody>
</table>

When this feature is enabled, the 6 bytes containing the high part (8 bits) of gyroscope and accelerometer data are associated to the 1st FIFO data set and the 2nd FIFO data set is not used.

The DEC_FIFO_G[2:0] field of the FIFO_CTRL3 register has to be set to a value different from 000b (1st FIFO data set stored in FIFO).

The DEC_FIFO_XL[2:0] field of FIFO_CTRL3 register has to be set to 000b (2nd FIFO data set not in FIFO).
6.8 Step counter and time stamp data in FIFO

It is possible to store timestamp and step counter data in the FIFO. These data are stored as a 3rd FIFO data set in the 6-byte data format shown in Table 54:

- 3 bytes for the time stamp;
- 1 byte is not used;
- 2 bytes for the number of steps.

<table>
<thead>
<tr>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
</tr>
</thead>
</table>

Table 54. Time stamp and pedometer data in FIFO

To enable this feature, the bit TIMER_PEDO_FIFO_EN must be set to 1 in the FIFO_CTRL2 register.

When this feature is enabled, the 6 bytes containing the time stamp and Step Counter data are associated to the 3rd FIFO data set: the TIMER_PEDO_DEC_FIFO[2:0] field of FIFO_CTRL4 register has to be used to define the decimator factor.

When this feature is enabled, data can be stored in the FIFO in two ways, depending on the configuration of the TIMER_PEDO_FIFO_DRDY bit in FIFO_CTRL2:

- When the TIMER_PEDO_FIFO_DRDY bit is set to 0, data are written to the FIFO at the ODR_FIFO rate set in the FIFO_CTRL5 register.
- When the TIMER_PEDO_FIFO_DRDY bit is set to 1, data are stored in the FIFO every time a new step is detected.

Follow these steps to store time stamp and pedometer data in the FIFO using either the internal trigger (accelerometer/gyroscope data ready) or the 'step detected' method:

1. Turn on the accelerometer;
2. Enable the time stamp and pedometer (see Section 5.1 and Section 5.4);
3. Choose the decimation factor for the 3rd FIFO data set through the TIMER_PEDO_DEC_FIFO[2:0] bits of the FIFO_CTRL4 register;
4. Set to 1 the TIMER_PEDO_FIFO_EN bit in the FIFO_CTRL2 register;
5. Configure the bit TIMER_PEDO_FIFO_DRDY in the FIFO_CTRL2 register, in order to choose the method of storing data in the FIFO (internal trigger or every step detected);
6. If an internal trigger is used, choose the FIFO ODR through the ODR_FIFO_[3:0] bits of the FIFO_CTRL5 register. If the 'step detected' trigger is used, no need to set the ODR_FIFO_[3:0] bits;
7. Configure the FIFO operating mode through the FIFO_MODE_[2:0] field of the FIFO_CTRL5 register.
6.9 Temperature data in FIFO

It is possible to store only temperature data as the 3rd FIFO data set.

To enable this feature:

- the bit TIMER_PEDO_FIFO_EN of the FIFO_CTRL2 register has to be set to 0;
- the bit FIFO_TEMP_EN of the CTRL4_C register has to be set to 1.

Temperature samples (16-bit) are stored in FIFO in the 6-byte data format shown in Table 55:

Table 55. Temperature data in FIFO

<table>
<thead>
<tr>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP [7:0]</td>
<td>TEMP [15:8]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Follow these steps to store 16-bit temperature data in the FIFO using the internal trigger (accelerometer/gyroscope data ready):

1. Turn on the accelerometer or the gyroscope;
2. Choose the decimation factor (different from 000b) for the 3rd FIFO data set through the TIMER_PEDO_DEC_FIFO[2:0] bits in the FIFO_CTRL4 register;
3. Set to 1 the FIFO_TEMP_EN bit in the CTRL4_C register and to 0 the bit TIMER_PEDO_FIFO_EN of the FIFO_CTRL2 register;
4. Choose the FIFO ODR through the ODR_FIFO_[3:0] bits of the FIFO_CTRL5 register;
5. Configure the FIFO operating mode through the FIFO_MODE_[2:0] field of the FIFO_CTRL5 register.
7 Temperature sensor

The LSM6DS33 is provided with an internal temperature sensor that is suitable for ambient temperature measurement.

If both the accelerometer and the gyroscope sensors are in Power-Down mode, the temperature sensor is off.

The maximum output data rate of temperature sensor is 52 Hz and its value depends on how the accelerometer and gyroscope sensors are configured:

- **If the gyroscope is in Power-Down mode:**
 - the temperature data rate is equal to 13 Hz if the accelerometer ODR is equal to 13 Hz (in both Low-Power and High-Performance mode);
 - the temperature data rate is equal to 26 Hz if the gyroscope configuration is 26 Hz Low-Power mode;
 - the temperature data rate is equal to 52 Hz for all other accelerometer configurations.

- **If the accelerometer is in Power-Down mode:**
 - the temperature data rate is equal to 13 Hz if the gyroscope configuration is 13 Hz Low-Power mode;
 - the temperature data rate is equal to 26 Hz if the gyroscope configuration is 26 Hz Low-Power mode;
 - the temperature data rate is equal to 52 Hz for all other gyroscope configurations.

- **In combo mode:**
 - if the gyroscope is configured in High-Performance mode, the temperature data rate is equal to 52 Hz regardless of the gyroscope ODR and the accelerometer configuration;
 - if the gyroscope is configured in Low-Power / Normal mode, the temperature data rate is equal to the maximum value between the accelerometer ODR and gyroscope ODR, while remaining below the 52 Hz value.

For the temperature sensor, the data-ready signal is represented by the TDA bit of the STATUS_REG register. The signal can be driven to the INT2 pin by setting to 1 the INT2_DRDY_TEMP bit of the INT2_CTRL register.

The temperature data is given by the concatenation of the OUT_TEMP_H and OUT_TEMP_L registers and it is represented as a number of 16 bits in two's complement format, with a sensitivity of +16 LSB/°C. The output zero level corresponds to 25 °C.

The LSM6DS33 allows swapping, by setting the BLE bit of the CTRL3_C register set to 1, the content of the lower and the upper part of the temperature output data registers (i.e. OUT_TEMP_H with OUT_TEMP_L).

Temperature sensor data can also be stored in FIFO with a configurable decimation factor (see Section 6.9 for details).
7.1 Example of temperature data calculation

Table 56 provides a few basic examples of the data that is read in the temperature data registers at different ambient temperature values. The values listed in this table are given under the hypothesis of perfect device calibration (i.e. no offset, no gain error,....).

<table>
<thead>
<tr>
<th>Temperature values</th>
<th>BLE = 0</th>
<th>BLE = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUT_TEMP_H (21h)</td>
<td>OUT_TEMP_L (20h)</td>
</tr>
<tr>
<td>0°C</td>
<td>FEh</td>
<td>70h</td>
</tr>
<tr>
<td>25°C</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>50°C</td>
<td>01h</td>
<td>90h</td>
</tr>
</tbody>
</table>
8 Self-test

The embedded self-test functions allows checking the device functionality without moving it.

8.1 Accelerometer self-test

When the accelerometer self-test is enabled, an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs exhibit a change in their DC levels which are related to the selected full scale through the sensitivity value.

The accelerometer self-test function is off when the ST_XL[1:0] bits of the CTRL5_C register are programmed to 00b; it is enabled when the ST_XL bits are set to 01b (positive sign self-test) or 10b (negative sign self-test).

When the accelerometer self-test is activated, the sensor output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. The complete accelerometer self-test procedure is indicated in Figure 25.

8.2 Gyroscope self-test

The gyroscope self-test allows testing of the mechanical and electrical part of the gyroscope sensor: when it is activated, an actuation force is applied to the sensor, emulating a definite Coriolis force, and the seismic mass is moved by means of this electrostatic test-force. In this case the sensor output exhibits an output change.

The gyroscope self-test function is off when the ST_G[1:0] bits of the CTRL5_C register are programmed to 00b; it is enabled when the ST_G bits are set to 01b (positive sign self-test) or 11b (negative sign self-test).

When the gyroscope self-test is active, the sensor output level is given by the algebraic sum of the signals produced by the velocity acting on the sensor and by the electrostatic test-force. The complete gyroscope self-test procedure is indicated in Figure 26.
Figure 25. Accelerometer self-test procedure

Note: Keep the device still during the self-test procedure

Write 30h to CTRL1_XL (10h)
Write 00h to CTRL2_G (11h)
Write 44h to CTRL3_C (12h)
Write 00h to CTRL4_C (13h)
Write 00h to CTRL5_C (14h)
Write 00h to CTRL6_G (15h)
Write 00h to CTRL7_G (16h)
Write 00h to CTRL8_XL (17h)
Write 38h to CTRL9_XL (18h)
Write 00h to CTRL10_C (19h)

→ Initialize Sensor, turn on sensor, enable X/Y/Z axes.
→ Set BDU=1, FS=2G, ODR = 52Hz

Power up, wait for 200ms for stable output

Check XLDA in STATUS_REG (1Eh) – Acc Data Ready Bit
Reading OUTX_XL/OUTY_XL/OUTZ_XL clears XLDA. Wait for the first sample
Read OUTX_XL (28h/29h), OUTY_XL (2Ah/2Bh), OUTZ_XL (2Ch/2Dh)
→ Discard data

Read the output registers after checking XLDA bit *5 times
Read OUTX_XL_L (28h), OUTX_XL_H (29h): Store data in OUTX_NOST
Read OUTY_XL_L (2Ah), OUTY_XL_H (2Bh): Store data in OUTY_NOST
Read OUTZ_XL_L (2Ch), OUTZ_XL_H (2Dh): Store data in OUTZ_NOST

The 16 bit data is expressed in two’s complement.

Average the stored data on each axis.

Write 01h to CTRL5_C (14h) → Enable Acc Self Test
Wait for 200ms for stable output

Check XLDA in STATUS_REG (1Eh) – Acc Data Ready Bit
Reading OUTX_XL/OUTY_XL/OUTZ_XL clears XLDA, Wait for the first sample
Read OUTX_XL (28h/29h), OUTY_XL (2Ah/2Bh), OUTZ_XL (2Ch/2Dh)
→ Discard data

Read the output registers after checking XLDA bit *5 times
Read OUTX_XL_L (28h), OUTX_XL_H (29h): Store data in OUTX_ST
Read OUTY_XL_L (2Ah), OUTY_XL_H (2Bh): Store data in OUTY_ST
Read OUTZ_XL_L (2Ch), OUTZ_XL_H (2Dh): Store data in OUTZ_ST

The 16 bit data is expressed in two’s complement.

Average the stored data on each axis.

Min(ST_X) = |OUTX_ST-OUTX_NOST| = |Max(ST_X)|
AND
Min(ST_Y) = |OUTY_ST-OUTY_NOST| = |Max(ST_Y)|
AND
Min(ST_Z) = |OUTZ_ST-OUTZ_NOST| = |Max(ST_Z)|

YES (PASS) NO (FAIL)

Write 00h to CTRL1_XL (10h): Disable sensor
Write 00h to CTRL5_C (14h): Disable self test
Figure 26. Gyroscope self-test procedure

Note: Keep the device still during the self-test procedure

- Write 00h to CTRL1_XL (10h)
- Write 5Ch to CTRL2_G (11h)
- Write 44h to CTRL3_C (12h)
- Write 00h to CTRL4_C (13h)
- Write 00h to CTRL5_C (14h)
- Write 00h to CTRL6_G (15h)
- Write 00h to CTRL7_G (16h)
- Write 00h to CTRL8_XL (17h)
- Write 00h to CTRL9_XL (18h)
- Write 38h to CTRL10_C (19h)

 → Initialize Sensor, turn on sensor, enable P/R/Y.
 → Set BDU=1, ODR=208Hz, FS=2000dps

Power up, wait for 800ms for stable output

- Check GDA in STATUS_REG (1Eh) – Gyro Data Ready Bit
 → Reading OUTX_G/OUTY_G/OUTZ_G clears GDA, Wait for the first sample
- Read OUTX_G(22h/23h), OUTY_G(24h/25h), OUTZ_G(26h/27h)

 → Discard data

Read the output registers after checking GDA bit 5 times

- Read OUTX_G_L(22h), OUTX_G_H(23h): Store data in OUTX_NOST
- Read OUTY_G_L(24h), OUTY_G_H(25h): Store data in OUTY_NOST
- Read OUTZ_G_L(26h), OUTZ_G_H(27h): Store data in OUTZ_NOST

 The 16 bit data is expressed in two’s complement.

 Average the stored data on each axis.

- Write 04h to CTRL5_C (14h) → Enable Gyro Self Test
- Wait for 60 ms

- Check GDA in STATUS_REG (1Eh) – Gyro Data Ready Bit
 → Reading OUTX/OUTY/OUTZ clears GDA, Wait for the first sample
- Read OUTX_G(22h/23h), OUTY_G(24h/25h), OUTZ_G(26h/27h)

 → Discard data

Read the output registers after checking GDA bit 5 times

- Read OUTX_G_L(22h), OUTX_G_H(23h): Store data in OUTX_ST
- Read OUTY_G_L(24h), OUTY_G_H(25h): Store data in OUTY_ST
- Read OUTZ_G_L(26h), OUTZ_G_H(27h): Store data in OUTZ_ST

 The 16 bit data is expressed in two’s complement.

 Average the stored data on each axis.

 Average the stored data on each axis.

- Write 00h to CTRL2_G (11h): Disable sensor
- Write 00h to CTRL5_C (14h): Disable self test

Condition for PASS/FAIL

- |Min(ST_X)| <= |OUTX_ST-OUTX_NOST| <= |Max(ST_X)|
 AND
- |Min(ST_Y)| <= |OUTY_ST-OUTY_NOST| <= |Max(ST_Y)|
 AND
- |Min(ST_Z)| <= |OUTZ_ST-OUTZ_NOST| <= |Max(ST_Z)|

 YES (PASS) NO (FAIL)
9 Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-Aug-2015</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved