
Pololu Romi 32U4 Control
Board User’s Guide

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

https://www.pololu.com/docs/0J69/all Page 1 of 54

1. Overview . 3

1.1. Included components . 3

1.2. What you will need . 4

1.3. Supported operating systems . 5

2. Contacting Pololu . 6

3. Romi 32U4 Control Board . 7

3.1. Microcontroller . 7

3.2. User interface . 7

3.3. Motor drivers and encoders . 9

3.4. Inertial sensors . 11

3.5. Power . 12

3.6. Expansion areas . 16

3.7. Raspberry Pi interface and level shifters . 19

3.8. Pin assignments . 22

3.9. Adding electronics . 25

3.9.1. Controlling a servo . 28

3.10. AVR timers . 28

3.11. Schematics and dimensions . 29

4. Assembling the Romi 32U4 Control Board . 31

5. Programming the Romi 32U4 Control Board . 33

5.1. Installing Windows drivers . 33

5.2. Programming using the Arduino IDE . 35

5.3. Programming using avr-gcc and AVRDUDE . 40

6. Romi 32U4 Arduino library . 43

7. The Romi 32U4 USB interface . 44

8. The A-Star 32U4 Bootloader . 46

9. Reviving an unresponsive Romi 32U4 . 49

9.1. Reviving using the Arduino IDE . 49

9.2. Reviving using AVRDUDE . 52

10. Related resources . 53

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

Page 2 of 54

1. Overview
The Romi 32U4 Control Board is designed to be assembled with a Romi chassis

[https://www.pololu.com/category/202/romi-chassis-and-accessories] to create a capable integrated robot

platform that can easily be programmed and customized.

Like our A-Star 32U4 programmable controllers [https://www.pololu.com/category/149/a-star-

programmable-controllers], the Romi 32U4 Control Board is built around a USB-enabled Atmel

ATmega32U4 AVR microcontroller, and it ships preloaded with an Arduino-compatible bootloader. The

control board features two H-bridge motor drivers and is designed to connect to a Romi Encoder Pair

Kit [https://www.pololu.com/product/3542] (available separately) to allow closed-loop motor control. It also

includes a powerful 5 V switching step-down regulator that can supply up to 2 A continuously, along

with a versatile power switching and distribution circuit. A 3-axis accelerometer and gyro enable a

Romi 32U4 robot to make inertial measurements, estimate its orientation, and detect external forces.

Three on-board pushbuttons offer a convenient interface for user input, while indicator LEDs, a buzzer,

and a connector for an optional LCD allow the robot to provide feedback.

The Romi 32U4 Control Board can be used either as a standalone control solution or as a base for a

more powerful Raspberry Pi controller. Its on-board connector and mounting holes allow a compatible

Raspberry Pi (Model B+ or newer, including Pi 3 Model B [https://www.pololu.com/product/2759] and

Model A+ [https://www.pololu.com/product/2760]) to plug directly into the control board. Integrated level

shifters make it easy to set up I²C communication and interface other signals between the two

controllers, and the control board automatically supplies 5 V power to an attached Raspberry Pi. In

this setup, the Raspberry Pi can handle the high-level robot control while relying on the Romi 32U4

Control Board for low-level tasks, like running motors, reading encoders, and interfacing with other

analog or timing-sensitive devices.

The I/O lines of both the ATmega32U4 and the Raspberry Pi are broken out to 0.1″-spaced through-

holes along the front and rear of the control board, and the board’s power rails are similarly accessible,

enabling sensors and other peripherals to easily be connected.

A software add-on is available that makes it easy to program a Romi 32U4 robot from the Arduino

environment, and we have Arduino libraries and example sketches to help get you started. A USB A

to Micro-B cable [https://www.pololu.com/product/2072] (not included) is required for programming.

1.1. Included components

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

1. Overview Page 3 of 54

https://www.pololu.com/category/202/romi-chassis-and-accessories
https://www.pololu.com/category/202/romi-chassis-and-accessories
https://www.pololu.com/category/149/a-star-programmable-controllers
https://www.pololu.com/category/149/a-star-programmable-controllers
https://www.pololu.com/product/3542
https://www.pololu.com/product/3542
https://www.pololu.com/product/2759
https://www.pololu.com/product/2760
https://www.pololu.com/product/2072
https://www.pololu.com/product/2072

The following components are

included with the Romi 32U4

Control Board:

• two low profile female headers for motors and encoders

• buzzer [https://www.pololu.com/product/1484]

• 2×7 female header [https://www.pololu.com/product/1027] and male header

[https://www.pololu.com/product/966] for LCD

• battery terminals

• four 3/16″ #2-56 screws and nuts

• four M2.5 standoffs [https://www.pololu.com/product/1952] (11 mm length), screws

[https://www.pololu.com/product/1968], and nuts [https://www.pololu.com/product/1967] for mounting

Raspberry Pi

An LCD and Raspberry Pi are not included with the Romi 32U4 Control Board.

1.2. What you will need

These additional items are also needed for using and assembling the Romi 32U4 Control Board:

Required accessories

• a Romi Chassis Kit [https://www.pololu.com/category/203/romi-chassis-kits] (this includes motors,

wheels, one ball caster, and battery contacts)

• a Romi Encoder Pair Kit [https://www.pololu.com/product/3542]

• six AA batteries [https://www.pololu.com/product/1003]. The Romi chassis and control board

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

1. Overview Page 4 of 54

https://a.pololu-files.com/picture/0J7511.1200.jpg?529c41c78c1ad9da09e649bc7063dd83
https://a.pololu-files.com/picture/0J7511.1200.jpg?529c41c78c1ad9da09e649bc7063dd83
https://www.pololu.com/product/1484
https://www.pololu.com/product/1027
https://www.pololu.com/product/966
https://www.pololu.com/product/966
https://www.pololu.com/product/1952
https://www.pololu.com/product/1968
https://www.pololu.com/product/1968
https://www.pololu.com/product/1967
https://www.pololu.com/category/203/romi-chassis-kits
https://www.pololu.com/product/3542
https://www.pololu.com/product/1003

work with both alkaline and NiMH batteries, though we recommend rechargeable NiMH cells.

Assembly tools

• soldering iron and solder (we recommend one with adjustable temperature control like the

Hakko FX-888D Digital Soldering Station [https://www.pololu.com/product/2779])

• small Phillips screwdriver

• USB A to Micro-B cable [https://www.pololu.com/product/2072] to connect the board to your

computer for programming and debugging

Optional tools

• small 2 mm slotted screwdriver for adjusting the LCD contrast

• small pair of pliers [https://www.pololu.com/product/150]

• wire cutter and stripper [https://www.pololu.com/product/1923], for adding wires for peripherals

• tape or small clamps (for holding parts together when soldering)

Optional accessories

You might also consider getting these for your Romi 32U4 Robot:

• an 8×2 character LCD [https://www.pololu.com/product/356]

• a compatible Raspberry Pi (Model B+ or newer, including Pi 3 Model B [https://www.pololu.com/

product/2759] and Model A+ [https://www.pololu.com/product/2760])

• sensors [https://www.pololu.com/category/7/sensors], such as optical [https://www.pololu.com/

category/79/sharp-distance-sensors] or sonar range finders [https://www.pololu.com/category/78/

sonar-range-finders]

• connectors and jumper wires [https://www.pololu.com/category/19/connectors], for connecting

additional sensors and components

• battery charger, if you are using rechargeable batteries; since the Romi just uses ordinary

AA batteries, we recommend basic AA chargers (into which you stick the individual cells)

available at most general electronics stores, though we carry a much fancier iMAX-B6AC V2

balance charger/discharger [https://www.pololu.com/product/2588] that can be also used for this

1.3. Supported operating systems

The Romi 32U4 Control Board can be programmed using Microsoft Windows 11, 10, 8.1, 8, 7, Vista,

XP (with Service Pack 3), Linux, and macOS 10.11 or later.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

1. Overview Page 5 of 54

https://www.pololu.com/product/2779
https://www.pololu.com/product/2072
https://www.pololu.com/product/150
https://www.pololu.com/product/1923
https://www.pololu.com/product/356
https://www.pololu.com/product/2759
https://www.pololu.com/product/2759
https://www.pololu.com/product/2760
https://www.pololu.com/category/7/sensors
https://www.pololu.com/category/79/sharp-distance-sensors
https://www.pololu.com/category/79/sharp-distance-sensors
https://www.pololu.com/category/78/sonar-range-finders
https://www.pololu.com/category/78/sonar-range-finders
https://www.pololu.com/category/19/connectors
https://www.pololu.com/product/2588
https://www.pololu.com/product/2588

2. Contacting Pololu
We would be delighted to hear from you about any of your projects and about your experience with

the Romi 32U4 Control Board. You can contact us [https://www.pololu.com/contact] directly or post on our

forum [http://forum.pololu.com/]. Tell us what we did well, what we could improve, what you would like to

see in the future, or anything else you would like to say!

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

2. Contacting Pololu Page 6 of 54

https://www.pololu.com/contact
http://forum.pololu.com/

3. Romi 32U4 Control Board

3.1. Microcontroller

Like our A-Star 32U4 programmable controllers [https://www.pololu.com/category/149/a-star-

programmable-controllers], the Romi 32U4 Control Board features an integrated, USB-enabled

ATmega32U4 AVR microcontroller from Atmel, clocked by a precision 16 MHz crystal oscillator. This

is the same microcontroller and clock frequency used in the Arduino Leonardo [https://www.pololu.com/

product/2192] and Arduino Micro [https://www.pololu.com/product/2188].

The control board includes a USB Micro-B connector that can be used to connect to a computer’s

USB port via a USB A to Micro-B cable [https://www.pololu.com/product/2072] (not included). The USB

connection can be used to transmit and receive data from the computer and program the board

over USB. The USB connection can also provide power for the microcontroller and most of the other

hardware on the board (but not motor power); see Section 3.5 for more details.

The control board’s ATmega32U4 comes preloaded with the Arduino-compatible A-Star 32U4 USB

bootloader [https://www.pololu.com/docs/0J69/8], which allows it to be easily programmed using the

Arduino IDE. For more information about programming the Romi 32U4 Control Board, see Section 5.

The board also has a 6-pin ISP header that allows it to be programmed with an external programmer,

such as our USB AVR programmer [https://www.pololu.com/product/3172]. Pin 1 of the header is indicated

with a small white dot and has an octagonal shape.

3.2. User interface

LEDs

The Romi 32U4 Control Board has five indicator LEDs.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 7 of 54

https://www.pololu.com/category/149/a-star-programmable-controllers
https://www.pololu.com/category/149/a-star-programmable-controllers
https://www.pololu.com/product/2192
https://www.pololu.com/product/2192
https://www.pololu.com/product/2188
https://www.pololu.com/product/2072
https://www.pololu.com/docs/0J69/8
https://www.pololu.com/docs/0J69/8
https://www.pololu.com/product/3172
https://a.pololu-files.com/picture/0J7509.1200.jpg?9b694e84fa333c2c83f1c34d55a1c928
https://a.pololu-files.com/picture/0J7509.1200.jpg?9b694e84fa333c2c83f1c34d55a1c928
https://a.pololu-files.com/picture/0J7519.1200.jpg?c5a1642f083ce938013fbab728f77383
https://a.pololu-files.com/picture/0J7519.1200.jpg?c5a1642f083ce938013fbab728f77383

• A yellow user LED is connected to Arduino digital pin 13, or PC7. You can drive this pin high

in a user program to turn this LED on. The A-Star 32U4 Bootloader [https://www.pololu.com/

docs/0J69/8] fades this LED on and off while it is waiting for a sketch to be loaded.

• A green user LED is connected to Arduino pin 30, or PD5, and lights when the pin is driven

low. While the board is running the A-Star 32U4 Bootloader or a program compiled in the

Arduino environment, it will flash this LED when it is transmitting data via the USB connection.

• A red user LED is connected to Arduino pin 17, or PB0, and lights when the pin is driven low.

While the board is running the A-Star 32U4 Bootloader or a program compiled in the Arduino

environment, it will flash this LED when it is receiving data via the USB connection.

The Romi32U4 library contains functions that make it easier to control the three user LEDs (see

Section 6). All three user LED control lines are also LCD data lines, so you will see them flicker when

you update the LCD. The green and red user LEDs also share I/O lines with pushbuttons (see below).

• A blue power LED next to the power switch indicates when the controller is receiving power

from the Romi’s batteries (the power switching circuit must be turned on).

• A green power LED on the bottom edge of the board near the USB connector indicates when

the USB bus voltage (VBUS) is present.

Pushbuttons

The Romi 32U4 Control Board has five pushbuttons: a power button in the rear left corner, a reset

button on the front right edge and three user pushbuttons located along the rear edge. The user

pushbuttons, labeled A, B, and C, are on Arduino pin 14 (PB3), pin 30 (PD5), and pin 17 (PB0),

respectively. Pressing one of these buttons pulls the associated I/O pin to ground through a resistor.

The three buttons’ I/O lines are also used for other purposes: pin 14 is MISO on the SPI interface, pin

30 and pin 17 control the green and red user LEDs, and all three pins are LCD data lines. Although

these uses require the pins to be driven by the AVR (or SPI slave devices in the case of MISO),

resistors in the button circuits ensure that the Romi 32U4 Control Board will not be damaged even

if the corresponding buttons are pressed at the same time, nor will SPI or LCD communications

be disrupted. The functions in the Romi32U4 library take care of configuring the pins, reading and

debouncing the buttons, and restoring the pins to their original states.

LCD

The Romi 32U4 Control Board has a set of through-holes in the center where a 2×7 header can be

soldered to connect an 8×2 character LCD [https://www.pololu.com/product/356] (or any other LCD with

the common HD44780 parallel interface [https://www.pololu.com/file/0J71/DMC50448N-AAE-AD.pdf] (109k

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 8 of 54

https://www.pololu.com/docs/0J69/8
https://www.pololu.com/docs/0J69/8
https://www.pololu.com/product/356
https://www.pololu.com/file/0J71/DMC50448N-AAE-AD.pdf

pdf)). You can adjust the LCD contrast with the potentiometer on the top right of the LCD connector.

We recommend using a 2 mm slotted screwdriver to adjust the contrast.

The Romi32U4 library provides functions to display data on a connected LCD. It is designed to

gracefully handle alternate use of the LCD data lines by only changing pin states when needed for an

LCD command, after which it will restore them to their previous states. This allows the LCD data lines

to be used for other functions (such as pushbutton inputs and LED drivers).

Note that the control board is not designed to allow both an LCD and a Raspberry Pi to plug into it

at the same time. However, having an LCD header soldered to the board should not interfere with

mounting a Raspberry Pi.

Buzzer

The buzzer [https://www.pololu.com/product/1484] included with the Romi 32U4 Control Board can be

soldered into the designated through-holes and used to generate simple sounds and music. By

default, it is connected to digital pin 6 (which also serves as OC4D, a hardware PWM output from the

AVR’s 10-bit Timer4). If you alternate between driving the buzzer pin high and low at a given frequency,

the buzzer will produce sound at that frequency. You can play notes and music with the buzzer using

functions in the Romi32U4 library. If you want to use pin 6 for an alternate purpose, you can disconnect

the buzzer circuit by cutting the surface-mount jumper next to the buzzer.

3.3. Motor drivers and encoders

Motor drivers

The Romi 32U4 Control Board has two Texas Instruments DRV8838 motor drivers that are used

to power the Romi chassis’s two mini plastic gearmotors [https://www.pololu.com/product/1520]. Four

Arduino pins are used to control the drivers:

• Digital pin 15, or PB1, controls the right motor direction (LOW drives the motor forward,

HIGH drives it in reverse).

• Digital pin 16, or PB2, controls the left motor direction.

• Digital pin 9, or PB5, controls the right motor speed with PWM (pulse width modulation)

generated by the ATmega32U4’s Timer1.

• Digital pin 10, or PB6, controls the left motor speed with PWM.

For more information about the drivers, see the DRV8838 datasheet [https://www.pololu.com/file/0J806/

drv8838.pdf.redirect] (1k redirect). We also sell a carrier board [https://www.pololu.com/product/2990] for this

driver.

The Romi32U4 library provides functions that allow you to easily control the motors (see Section 6).

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 9 of 54

https://www.pololu.com/product/1484
https://www.pololu.com/product/1520
https://www.pololu.com/file/0J806/drv8838.pdf.redirect
https://www.pololu.com/file/0J806/drv8838.pdf.redirect
https://www.pololu.com/product/2990

The motor driver connections are brought out to two pairs of headers that are intended to interface with

the Romi Encoder Pair Kit [https://www.pololu.com/product/3542]. A pair of low-profile female headers is

included with the Romi 32U4 Control Board and can be soldered into either the outer or inner row of

through-holes on each side. (Note that these headers must be soldered into the positions that match

the male header installed on the encoder board.)

As your batteries run out, the voltage supplied to the motor drivers (VSW) will decrease,

which will make the motors slower. It is possible to account for this in your code

by monitoring the battery voltage (see Section 3.5) or using the encoders and other

sensors to monitor the movement of the robot.

Quadrature encoders

The Romi 32U4 Control Board is configured to connect the quadrature encoder outputs from the Romi

Encoder Pair Kit to the ATmega32U4 microcontroller. The encoders can be used to track the rotational

speed and direction of the robot’s drive wheels. They provide a resolution of 12 counts per revolution

of the motor shaft when counting both edges of both channels, which corresponds to approximately

1440 counts per revolution of the Romi’s wheels. For more information about the specifications of the

Romi encoders, please see the Romi Encoder Pair Kit product page [https://www.pololu.com/product/

3542].

Quadrature encoder transitions are often detected by monitoring both encoder channels directly.

However, since transitions on the Romi’s encoders can occur at high frequencies (several thousand

per second) when its motors are running, it is necessary to use the AVR’s pin change interrupts or

external interrupts to read the encoders. To reduce the required number of interrupt pins, the Romi

32U4 Control Board XORs together both channels of each encoder and connects the resulting signal

to an interrupt pin, while channel B of each encoder is connected to a non-interrupt pin:

• Digital pin 7, or PE6, reads the right encoder XORed signal using external interrupt INT6.

• Digital pin 8, or PB4, reads the left encoder XORed signal using pin change interrupt

PCINT4.

• Digital pin 23 (analog pin 5), or PF0, reads the right encoder channel B.

• Pin PE2 reads the left encoder channel B.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 10 of 54

https://www.pololu.com/product/3542
https://www.pololu.com/product/3542
https://www.pololu.com/product/3542

The XORed signal and the channel B signal can be used to reconstruct the channel A signal by simply

XORing them again: (A XOR B) XOR B = A. For both encoders, channel B leads channel A when the

motor is rotating in the forward direction; that is, B rises before A rises and B falls before A falls. (The

waveforms in the diagram above would be produced by forward rotation.) Note that this description

designates the A and B signals as labeled on the control board itself, which puts A in front on both

sides.

The Romi32U4 library provides appropriate interrupt service routines and functions for reading the

encoders and keeping track of their counts (see Section 6).

3.4. Inertial sensors

The Romi 32U4 Control Board includes on-board inertial sensors connected to the ATmega32U4’s I²C

interface that can be used in advanced applications, such as helping detect collisions and determining

the robot’s orientation. These sensors are part of the ST LSM6DS33 [https://www.pololu.com/product/

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 11 of 54

https://www.pololu.com/product/2736

2736], which combines a 3-axis accelerometer and 3-axis gyro into a single package.

The inertial sensors are connected to the board’s I²C bus by default, but they can be disconnected by

cutting the surface-mount jumpers labeled “IMU SDA Jmp” and “IMU SCL Jmp”. Level shifters built into

the control board allow the ATmega32U4, operating at 5 V, to communicate with the 3.3 V sensors. If

a Raspberry Pi is plugged into the control board, its I²C pins are connected to the 3.3 V side of the bus

as well. (See Section 3.7 for more information about the Raspberry Pi interface.)

We recommend carefully reading the LSM6DS33 datasheet [https://www.pololu.com/file/0J1087/

LSM6DS33.pdf] (1MB pdf) to understand how these sensors work and how to use them.

Using the sensors

The Romi32U4 library (see Section 6) includes example programs that demonstrate how to use the

sensors.

3.5. Power

The Romi 32U4 Control Board includes battery terminal connections that provide access to power

from the Romi chassis’s six-AA battery compartment. We recommend using rechargeable AA NiMH

cells, which results in a nominal voltage of 7.2 V (1.2 V per cell). You can also use alkaline cells, which

would nominally give you 9 V.

The negative battery voltage is connected to GND. The positive battery voltage is designated VBAT.

VBAT feeds into a reverse protection circuit and then a power switching circuit controlled by the on-

board pushbutton or slide switch. The output of the power switching circuit is designated VSW.

VSW provides power to the motors through the on-board DRV8838 motor drivers, so the motors can

only operate if the batteries are installed and the power switch circuit is on.

The reverse protected and switched battery voltage on VSW can be monitored through a voltage

divider that is connected to analog pin 1 (PF6) by default. The divider outputs a voltage that is equal

to one third of the battery voltage, which will be safely below the ATmega32U4’s maximum analog

input voltage of 5 V as long as the battery voltage is less than 15 V (though the maximum voltage

for the board is still limited to 10.8 V by the DRV8838 motor driver). The readBatteryMillivolts()

function in the Romi32U4 library can be used to determine the battery voltage from this reading. The

surface-mount jumper labeled “A1 = BATLEV” can be cut to disconnect the voltage divider and free

the pin for other uses.

Power switch circuit

The Romi 32U4 Control Board uses the patented latching circuit from the Pololu pushbutton power

switch [https://www.pololu.com/product/2808], which provides a solid-state power switch for your robot

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 12 of 54

https://www.pololu.com/product/2736
https://www.pololu.com/file/0J1087/LSM6DS33.pdf
https://www.pololu.com/file/0J1087/LSM6DS33.pdf
https://www.pololu.com/product/2808
https://www.pololu.com/product/2808

controlled with the on-board pushbutton. By default, this pushbutton can be used to toggle power: one

push turns on power and another turns it off. Alternatively, a separate pushbutton can be connected

to the PWRA and PWRB pins and used instead. Multiple pushbuttons can be wired in parallel for

multiple control points, and each of the parallel pushbuttons, including the one on the board itself, will

be able to turn the switch on or off. The latching circuit performs some button debouncing, but

pushbuttons with excessive bouncing (several ms) might not function well with it.

For proper pushbutton operation, the board’s slide switch should be left in its Off

position. (Sliding the switch to the On position will cause the board power to latch on,

and the switch must be returned to the Off position before the board can be turned off

with the pushbutton.)

Alternatively, to disable the pushbutton, you can cut the button jumper labeled Btn Jmp; this transfers

control of the board’s power to the on-board slide switch instead. A separate slide or toggle switch can

be connected to the GATE pin and used instead.

The power switch circuit also offers several alternate pushbutton connection options that result in

push-on-only or push-off-only operation, and additional inputs enable further power control options like

allowing your robot to turn off its own power. These advanced control options are available through the

button connection pins and four control inputs:

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 13 of 54

PIN Description

PWRA
Connect through momentary switch to pin “PWRB” for standard push-on/push-off

operation. Connect through momentary switch to ground for on-only operation.

PWRB
Connect through momentary switch to pin “PWRA” for standard push-on/push-off

operation.

ON
A high pulse (> 1 V) on this pin turns on the switch circuit. This pin only functions when

pushbutton operation is enabled (i.e. the button jumper has not been cut).

OFF

A high pulse (> 1 V) on this pin turns off the switch circuit (e.g. allowing a powered

device to shut off its own power). This pin only functions when pushbutton operation

is enabled.

CTRL

With pushbutton operation enabled, this pin directly determines the state of the switch

circuit. A high pulse (> 1 V) on this pin turns on the switch; a low pulse (e.g. driving

the pin low with a microcontroller output line or pushing a button connected from this

pin to ground) turns the switch off. Leave this pin disconnected or floating when not

trying to set the switch state. Note that this pin should not be driven high at the same

time the “OFF” pin is driven high.

GATE

With pushbutton operation disabled (button jumper cut), this pin controls the state of

the switch circuit: driving it low turns the switch on, while letting it float turns the switch

off. Connect through slide or toggle switch to ground for on/off operation. Leave this

pin disconnected or floating for proper pushbutton operation. We recommend only

ever driving this pin low or leaving it floating; this pin should never be driven high while

the slide switch is in the “On” position.

5 V and 3.3 V regulators

VSW supplies power to a 5 V regulator, whose output is designated VREG. The battery voltage is

regulated to 5 V by an MP4423H switching buck converter; although the regulator itself works with

input voltages up to 36 V, the motor drivers limit the control board’s maximum input voltage to 10.8 V.

When available, VREG is generally used to supply logic power for the ATmega32U4, motor drivers,

and encoders. The rest of the regulator’s achievable output current, which depends on input voltage

and ambient conditions, can be used to power other devices; this can include an attached Raspberry

Pi (which typically draws a few hundred milliamps). Under typical conditions, up to 2 A of current is

available from the VREG output. (We also make a standalone regulator [https://www.pololu.com/product/

2858] based on this integrated circuit.)

The MP4423H regulator features an open-drain power good output, PG, which requires an external

pull-up. PG drives low when the 5 V regulator’s output voltage falls below around 85% of the nominal

voltage and becomes high-impedance when the output voltage rises above around 90%. The regulator

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 14 of 54

https://www.pololu.com/product/2858
https://www.pololu.com/product/2858

circuit on the Romi 32U4 Control Board can be disabled by driving the regulator shutdown pin,

REGSHDN, high; this will cause 5 V logic power for the control board to be sourced from USB instead

if it is available.

The Romi 32U4 Control Board also contains a 3.3 V LDO that draws its power from the output of the

logic power selection circuit described below. The output of the 3.3 V regulator is designated 3V3 and

is used to supply the on-board inertial sensors and level shifters.

Logic power selection

The Romi 32U4 Control Board’s power selection circuit uses the TPS2113A power multiplexer

[https://www.pololu.com/product/2596] from Texas Instruments to choose whether its 5 V supply

(designated 5V) is sourced from USB or the batteries via the 5 V regulator, enabling the control board

to safely and seamlessly transition between them. The TPS2113A is configured to select regulated

battery power (VREG) unless the regulator output falls below about 4.5 V. If this happens, it will select

the higher of the two sources, which will typically be the USB 5 V bus voltage if the control board is

connected to USB.

Consequently, when the Romi 32U4 Control Board is connected to a computer via USB, it will receive

5 V logic power even when the power switch is off. This can be useful if you want to upload or test a

program without drawing power from the batteries and without operating the motors. It is safe to have

USB connected and battery power switched on at the same time.

The currently selected source is indicated by the STAT pin; this pin is an open-drain output that

is low if the external power source is selected and high-impedance if the USB supply is selected.

The current limit of the TPS2113A is set to about 1.9 A nominally. For more information about the

power multiplexer, see the TPS2113A datasheet [https://www.pololu.com/file/0J771/tps2113a.pdf.redirect]

(1k redirect).

The 5 V output of the selection circuit is used to supply the control board’s ATmega32U4

microcontroller, logic power for the DRV8838 motor drivers, and the encoders; it also optionally powers

an attached Raspberry Pi.

Raspberry Pi power

By default, the control board will provide power from its 5V line to an attached Raspberry Pi. In this

situation, we recommend switching on the power circuit so that the Raspberry Pi receives power

from the batteries through the control board’s on-board switching regulator. Alternatively, you can use

a USB wall power adapter [https://www.pololu.com/product/1459] to supply power through the control

board’s USB connector, although we have sometimes observed AVR brown-out resets occurring when

a board powers the Raspberry Pi this way. A typical computer USB port might not be able to supply

enough current to properly power the Romi 23U4 Control Board and an attached Raspberry Pi.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 15 of 54

https://www.pololu.com/product/2596
https://www.pololu.com/product/2596
https://www.pololu.com/file/0J771/tps2113a.pdf.redirect
https://www.pololu.com/product/1459

Power provided to the Raspberry Pi can be switched off by driving the Raspberry Pi shutdown pin,

RPISHDN, to 5 V.

An ideal diode circuit on the control board prevents reverse current from flowing into the Romi 32U4

Control Board’s 5 V supply if the Raspberry Pi is separately powered (for example, through its USB

power receptacle). However, starting with the Raspberry Pi 3 Model B+, there is no corresponding

ideal diode circuit on the Raspberry Pi’s USB power input, so it is possible for the control board

to backfeed a USB power adapter through the Raspberry Pi. As a result, we do not recommend

connecting external USB power to the Raspberry Pi while it is powered through the control board.

Backfeeding is not an issue with older Raspberry Pi versions, which do have a diode circuit on the

USB power input. With Raspberry Pi versions prior to the Pi 3 B+, it is safe to have any combination

of control board USB power, battery power, and Raspberry Pi USB power connected to the system.

The RPI5V pin provides direct access to the Raspberry Pi’s 5 V line, which comes from either the

control board’s 5V supply or the Raspberry Pi’s USB power input (typically whichever is higher if both

are connected). The 3.3 V output of the Raspberry Pi is also made available on the RPI3V3 pin.

Note that the diode circuit prevents power from being shared in the reverse direction: the Raspberry

Pi cannot supply 5 V logic power to the control board through the 40-pin connector.

Power distribution

• VBAT is connected to the battery contact labeled BAT1+ and provides a direct connection to

the battery supply.

• VRP provides access to the battery voltage after reverse-voltage protection.

• VSW is the battery voltage after reverse protection and the power switch circuit.

• VREG is the output of the on-board 5 V regulator.

• 5V is the output of the TPS2113A power multiplexer circuit which is connected to VREG by

default, but switches to 5 V USB power if VREG is too low.

• 3V3 is the output of the 3.3 V LDO regulator.

See Section 3.6 for a diagram of the board’s power distribution buses and access points.

3.6. Expansion areas

The Romi 32U4 Control Board has several expansion areas (primarily in three groups near the front

left and middle and back right edges) that break out all of the general-purpose I/O lines from the

ATmega32U4 microcontroller and the Raspberry Pi. The board also provides access to various power

inputs, outputs, and control pins, and it makes a few stand-alone buses available to help you make

connections. The following diagrams identify the locations of these pins and the hardware associated

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 16 of 54

with them; they are also available as a printable PDF [https://www.pololu.com/file/0J1261/romi-32u4-control-

board-pinout-power.pdf] (1MB pdf). For more information about the ATmega32U4 microcontroller and its

peripherals, see Atmel’s ATmega32U4 documentation.

Pinout diagram of the Romi 32U4 Control Board (ATmega32U4 pinout, peripherals, and board
power control).

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 17 of 54

https://www.pololu.com/file/0J1261/romi-32u4-control-board-pinout-power.pdf
https://www.pololu.com/file/0J1261/romi-32u4-control-board-pinout-power.pdf
https://a.pololu-files.com/picture/0J7534.1200.jpg?6806f467dc5a7a688274943df76a28d0
https://a.pololu-files.com/picture/0J7534.1200.jpg?6806f467dc5a7a688274943df76a28d0

Pinout diagram of the Romi 32U4 Control Board (Raspberry Pi pinout, peripherals, and level
shifters).

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 18 of 54

https://a.pololu-files.com/picture/0J7535.1200.jpg?7eefc37dc5f50c1a281cf469d79ed0a4
https://a.pololu-files.com/picture/0J7535.1200.jpg?7eefc37dc5f50c1a281cf469d79ed0a4

Power distribution diagram of the Romi 32U4 Control Board.

3.7. Raspberry Pi interface and level shifters

The Romi 32U4 Control Board was designed to be easy to interface with a Raspberry Pi single-

board computer to expand the Romi’s processing power. It has a connector and mounting holes

matching the Raspberry Pi HAT (Hardware Attached on Top) specification and is designed to connect

to the Model B+ and newer versions of the Raspberry Pi with 40-pin GPIO headers (including

the Raspberry Pi 3 Model B [https://www.pololu.com/product/2759] and Model A+ [https://www.pololu.com/

product/2760]). A 2×20-pin 0.1″ female header is soldered to the control board, and it ships with a set of

four standoffs [https://www.pololu.com/product/1952], screws [https://www.pololu.com/product/1968], and nuts

[https://www.pololu.com/product/1967].

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 19 of 54

https://a.pololu-files.com/picture/0J7536.1200.jpg?2be5c68b31db96f42bbbd2c3384fe754
https://a.pololu-files.com/picture/0J7536.1200.jpg?2be5c68b31db96f42bbbd2c3384fe754
https://www.pololu.com/product/2759
https://www.pololu.com/product/2760
https://www.pololu.com/product/2760
https://www.pololu.com/product/1952
https://www.pololu.com/product/1968
https://www.pololu.com/product/1967
https://www.pololu.com/product/1967

I²C communication

When used with a Raspberry Pi, the control board is designed to serve as an auxiliary controller,

communicating with the Raspberry Pi using an I²C interface (also known as 2-wire Serial Interface,

or TWI). As such, the ATmega32U4 microcontroller’s I²C data and clock lines (SDA and SCL) are

connected to the corresponding lines on the Raspberry Pi’s I²C bus 1 through on-board level-shifting

circuits. These bidirectional level shifters convert between the AVR’s 5 V logic level and the Raspberry

Pi’s 3.3 V logic level.

We have written an Arduino library [https://github.com/pololu/pololu-rpi-slave-arduino-library] for our our

32U4 family of boards that lets them act as an I²C slave and provides a framework for communication

between the ATmega32U4 and a Raspberry Pi master.

A tutorial [https://www.pololu.com/blog/663] on the Pololu blog demonstrates this library and its included

example code, using them to make a robot that can be remotely controlled and monitored through a

web server running on the Raspberry Pi.

General-purpose level shifters

In addition to the dedicated I²C level shifters, the board also makes available a few general-purpose

level shifters that are not connected to any signals by default.

LS1 is a dual-channel unidirectional level shifter that converts a pair of 5 V inputs (HA and HB) to a

pair of corresponding 3.3 V outputs (LA and LB).

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 20 of 54

https://a.pololu-files.com/picture/0J7520.1200.jpg?6951751e4b02e61d5f0a709f104f4d46
https://a.pololu-files.com/picture/0J7520.1200.jpg?6951751e4b02e61d5f0a709f104f4d46
https://github.com/pololu/pololu-rpi-slave-arduino-library
https://www.pololu.com/blog/663

LS2 and LS3 are each single-channel, tristatable, unidirectional level shifters. Each of these exposes

four pins: OE (output enable), IN (input), OUT (shifted output), and VCC (logic supply voltage).

• When OE is high, OUT is in a high impedance state.

• When OE is low, OUT matches the state of IN, shifted to the voltage supplied on VCC.

For example, if you pull OE low, connect a 3.3 V signal to IN, and connect 5V to VCC, the signal will

be shifted to 5 V logic level on OUT.

The input logic level can be 1.8 V to 5.5 V, while VCC (and the output logic level) can be 3 V to 5.5 V.

The IN signal can have either a lower or higher logic level than the VCC voltage: you could connect a

5 V signal to IN and a 3.3 V to VCC or a 3.3 V signal to IN and a 5 V to VCC.

Powering the Raspberry Pi from the control board

The control board will provide 5 V power to an attached Raspberry Pi by default. See Section 3.5 for

more details about how power is shared and can be controlled between the two boards.

ID EEPROM

The Romi 32U4 Control Board includes a 32-kilobit (4096-byte) EEPROM that connects to the

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 21 of 54

Raspberry Pi’s ID_SD and ID_SC pins. The EEPROM ships with its contents blank, but you can

program it as an ID EEPROM in the format specified by the Raspberry Pi HAT specifications

[https://github.com/raspberrypi/hats], using the utilities provided there. When suitably programmed, the

EEPROM can help the Raspberry Pi identify and configure itself to work with the Romi 32U4 Control

Board.

Write protection for the EEPROM can be enabled by using solder to bridge the surface-mount jumper

labeled “WP” next to the EEPROM chip. (The EEPROM is not write-protected by default.)

3.8. Pin assignments

The table below lists the most important pin assignments for the ATmega32U4 on the Romi 32U4

Control Board. This table is helpful if you want to add your own electronics to the Romi 32U4, write

your own low-level code for interfacing with the hardware, or just want to understand better how the

Romi 32U4 works. Each row represents a physical pin on the ATmega32U4.

The “ATmega32U4 pin name” column shows the official name of the pin according to the

ATmega32U4 datasheet [https://www.microchip.com/en-us/product/ATmega32u4].

The “Arduino pin names” column lists the names provided by the Arduino environment for the pin.

These names can generally be used as arguments to any function that takes a pin number. However,

there are some exceptions. For example, passing the number 4 to analogRead actually reads pin A4,

not pin 4. Also, due to hardware limitations, some functions only work on a limited set of pins.

The “Romi 32U4 functions” column documents what the pin is used for on the Romi 32U4 Control

Board. Many pins can serve multiple purposes concurrently by switching modes. For example, PB0

can read the state of button C when it is an input, and it can control the red LED and serve as an LCD

data line when it is an output.

The “Note/alternate functions” column documents other features of the pin, although some of those

features might be impractical to use.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 22 of 54

https://github.com/raspberrypi/hats
https://github.com/raspberrypi/hats
https://www.microchip.com/en-us/product/ATmega32u4

ATmega32U4

pin name

Arduino

pin names

Romi 32U4 Control Board

functions
Notes/alternate functions

PB7 11 LCD control line (E)

Timer0 PWM output A

(OC0A)

Timer1 PWM output C

(OC1C)

UART flow control (RTS)

Pin-change interrupt

(PCINT7)

PD4 4, A6, 24 LCD control line (RS)

Analog input (ADC8)

Timer1 input capture pin

(ICP1)

PB3 14, MISO
User pushbutton A

LCD data line DB4

SPI Master Input/Slave

Output (MISO)

Pin-change interrupt

(PCINT3)

ISP programming line (PDO)

PB0

17,

LED_BUILTIN_RX,

SS

Red LED (RX)

User pushbutton C

LCD data line DB5

SPI slave select (SS)

Pin-change interrupt

(PCINT0)

PC7 13, LED_BUILTIN
Yellow LED

LCD data line DB6

Timer4 PWM output A

(OC4A)

Timer3 input capture pin

(ICP3)

Divided system clock output

(CLKO)

PD5
30,

LED_BUILTIN_TX

Green LED (TX)

User pushbutton B

LCD data line DB7

UART external clock (XCK1)

UART flow control (CTS)

PD7 6, A7, 25 Buzzer PWM

Analog input (ADC10)

Timer4 PWM output D

(OC4D)

Timer0 counter source (T0)

PF6 A1, 19 Battery level input (VIN/3)
Analog input (ADC6)

JTAG test data out (TDO)

PB6 10, A10, 28 Left Motor PWM Analog input (ADC13)

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 23 of 54

ATmega32U4

pin name

Arduino

pin names

Romi 32U4 Control Board

functions
Notes/alternate functions

Timer1 PWM output B

(OC1B)

Timer4 PWM output B

(OC4B)

Pin-change interrupt

(PCINT6)

PB2 16, MOSI Left motor direction

SPI Master Output/Slave

Input (MOSI)

Pin-change interrupt

(PCINT2)

ISP programming line (PDI)

PB5 9, A9, 27 Right motor PWM

Analog input (ADC12)

Timer1 PWM output A

(OC1A)

Timer4 PWM output B

(OC4B)

Pin-change interrupt

(PCINT5)

PB1 15, SCK Right motor direction

SPI Clock (SCK)

Pin-change interrupt

(PCINT1)

ISP programming line (SCK)

PB4 8, A8, 26 Left encoder XORed input

Analog input (ADC11)

Pin-change interrupt

(PCINT4)

PE2 - Left encoder input
Hardware bootloader select

(HWB)

PE6 7 Right encoder XORed input

Analog comparator negative

input (AIN0)

External interrupt source

(INT6)

PF0 A5, 23 Right encoder input Analog input (ADC0)

PD0 3, SCL
I²C clock for Raspberry Pi communication

and inertial sensors

Timer0 PWM output B

(OC0B)

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 24 of 54

ATmega32U4

pin name

Arduino

pin names

Romi 32U4 Control Board

functions
Notes/alternate functions

External interrupt source

(INT0)

PD1 2, SDA
I²C data for Raspberry Pi communication

and inertial sensors

External interrupt source

(INT1)

PD2 0 Free I/O

UART receive pin (RXD1)

External interrupt source

(INT2)

PD3 1 Free I/O

UART transmit pin (TXD1)

External interrupt source

(INT3)

PC6 5 Free I/O

Timer3 PWM output A

(OC3A)

Timer4 PWM output A

(OC4A)

PD6 12, A11, 29 Free I/O

Analog input (ADC9)

Timer4 PWM output D

(OC4D)

Timer1 counter source (T1)

PF7 A0, 18 Free I/O
Analog input (ADC7)

JTAG test data in (TDI)

PF5 A2, 20 Free I/O

Analog input (ADC5)

JTAG test mode select

(TMS)

PF4 A3, 21 Free I/O
Analog input (ADC4)

JTAG test clock (TCK)

PF1 A4, 22 Free I/O Analog input (ADC1)

RESET - Reset pushbutton
internally pulled high, active

low

AREF - - Analog reference

3.9. Adding electronics

This section gives tips for how additional electronics can be connected to the Romi 32U4 Control

Board.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 25 of 54

Free I/O pins

If you want your additional devices to send or receive information from the AVR, you will need to

connect them to one or more of the AVR’s I/O pins. The pin assignment table in Section 3.8 lists all

of these pins and how they are used. Many of the I/O pins are already being used for some other

purpose on the board, but there are 8 free I/O pins: 0, 1, 5, 12, A0, A2, A3, and A4. Any of the free I/

O lines can be used as basic digital inputs or outputs; each pin also has some special capabilities.

Pin 0 (PD2) and pin 1 (PD3) are the RX and TX lines of the AVR’s TTL serial port.

Pin 5 (PC6) is a hardware PWM output and is usable with the Arduino analogWrite() function. Pin 12

(A11/PD6) can also be used as a PWM output, but it is not supported by analogWrite() , and using

pin 12 for PWM might conflict with uses of pin 6 (which controls the buzzer by default) as these two

pins are complementary outputs of Timer4 channel D.

Pins 12 (A11/PD6), A0 (18/PF7), A2 (20/PF5), A3 (21/PF4), and A4 (22/PF1) can be used as analog

inputs.

Freeing up more I/O pins

If the free I/O pins are not sufficient for connecting the devices you want to connect, you might need

to disable or disconnect some of the other features of the Romi 32U4 Control Board to free up more I/

O pins.

If you do not need the AVR to be able to measure the battery voltage, you can use pin A1 (19/PF6) for

other purposes. This pin can be used for digital input and output, as well as analog input. If you want

to use this pin as a digital or analog input, you might need to cut the surface-mount jumper labeled “A1

= BATLEV” in order to disconnect it from the on-board voltage divider. If you only want to use A1 as

an output, you might not need to cut that jumper.

If you are not connecting an LCD to the board’s LCD connector, then pin 11 (PB7) and pin 4 (A6/PD4)

are free. Both pins can be used for digital input and output. In addition, pin 11 can be used as a PWM

output and a pin change interrupt and pin 4 can be used as an analog input.

If you are not connecting an LCD to the board’s LCD connector, you can use the LCD contrast

potentiometer for other purposes. The output of the potentiometer is a 0 V to 5 V signal which is

accessible on the LCD connector. It can be connected to any free analog input if you want to read it

from the AVR, or it might be useful to connect it to the other electronics that you are adding.

If you do not need to use the buzzer, you can free up pin 6 (A7/PD7) by cutting the surface-mount

jumper labeled “6 = Buzzer”. Pin 6 can be used as a PWM output, digital I/O line, or analog input.

Disabling the buzzer also frees up Timer4, which has several PWM output pins. These pins can be

used as PWM outputs if they are not needed for their normal tasks.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 26 of 54

If you do not need encoders, you can free up pin 7 (PE6), pin 8 (A8/PB4), PE2, and pin A5 (23/PF0).

Each of those pins has a corresponding surface mount jumper on the bottom of the board that can be

cut in order to disconnect the encoder output from the AVR.

Be careful about connecting electronics to pin 13 (PC7), pin 17 (PB0), and pin 30 (PD5). These pins

are used to control the LEDs on the Romi 32U4. All three of these pins are controlled as outputs by the

bootloader. Pin 17 (PB0) and pin 30 (PD5) are used as RX and TX indicators, so if you are sending

or receiving data over USB then the Arduino USB code will drive those pins in its interrupt service

routines while your sketch is running.

I²C devices

It should be possible to attach additional I²C slave devices to the control board’s I²C bus as long as

the additional devices’ slave addresses do not conflict with that of the LSM6DS33, which uses 7-bit

address 1101011. The ATmega32U4’s I²C pins (2 and 3) operate at 5 V. If you are connecting a 3.3 V

device, you can connect it to the 3.3 V side of the bus instead (accessible through Raspberry Pi GPIO

pins 2, for SDA, and 3, for SCL, even if a Raspberry Pi is not connected). Separate level shifters might

be necessary to interface with devices that use other voltages.

If you do not want to use the inertial sensors on the I²C bus, you can cut the surface-mount jumpers

labeled “IMU SDA Jmp” and “IMU SCL Jmp”. This frees up pin 2 (PD1) and pin 3 (PD0) for limited use

as digital inputs and outputs as long as a Raspberry Pi is not attached to the control board. Note that

the AVR’s I²C pins will remain connected to the on-board I²C level shifters and will therefore still be

pulled up to 5 V.

Power

The control board’s power nodes are accessible in several areas on the board. If you power additional

devices from VSW, then they will be powered whenever the control board’s power is in ON, and they

will receive whatever voltage the batteries are outputting. If you power them from VREG, they will get

5 V power whenever the batteries are installed and the power is on (but they cannot be powered from

USB). If you power them from a 5V pin, then they will receive 5V power whenever the control board’s

logic components are powered. If you power them from 3V3, they will receive 3.3V power whenever

the control board’s logic components are powered. For more information about these power nodes

and how much current they can provide, see Section 3.5.

It is also possible to add your own power switch to control power to the Romi 32U4 Control Board, as

described in Section 3.5.

Ground

You should make sure that all the grounds in your system are connected. The Romi 32U4 Control

Board’s ground node can be accessed from pins labeled “GND”. It should be connected to the ground

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 27 of 54

node of every other circuit board or device you add to the robot.

3.9.1. Controlling a servo

It is possible to modify the Servo library that comes with the Arduino IDE to use Timer 3 instead

of Timer 1 with an ATmega32U4 based controller like the Romi 32U4. The modified Servo library

does not interfere with Romi32U4Motors, making it possible to simultaneously control servos and the

motors.

Warning: The modifications described here will affect any sketch for an ATmega32U4

based controller that uses the Servo library, including the Arduino Leonardo or A-Star.

1. First, you will need to locate the Arduino IDE’s Servo library, and find the file inside it named

ServoTimers.h. For the 1.6.x versions of the IDE, this file can be found in libraries/Servo/src/

avr/ServoTimers.h. If you are using Mac OS X, you will need to right-click on the Arduino IDE

icon and select “Show Package Contents” to see the files inside.

2. Open ServoTimers.h in a text editor.

3. Locate the following lines of code in ServoTimers.h:

4. The lower two lines of code specify that the library should use Timer 1. To use Timer 3

instead, just change _useTimer1 to _useTimer3 and _timer1 to _timer3 .

5. Save the file.

The Arduino IDE will automatically incorporate your modifications to the Servo library. The next time

you compile a sketch for an ATmega32U4 based controller that uses the Servo library, it will use Timer

3 instead of Timer 1.

3.10. AVR timers

The ATmega32U4 has 4 timers: Timer0, Timer1, Timer3, and Timer4. Each timer has a different set of

features, as documented in the datasheet.

• Timer0 is used by the Arduino environment for timing-related functions like millis() .

• Timer1 is used by the Romi 32U4 Control Board Arduino library for driving motors.

• Timer3 is not used by the Romi 32U4 Arduino library and can be freely used for your own

purposes.

1
2
3

#elif defined(__AVR_ATmega32U4__)
#define _useTimer1
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;

?

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 28 of 54

• Timer4 is used by the Romi 32U4 Arduino library for controlling the buzzer. The buzzer pin

(digital pin 6, or PD7; Timer4 output OC4D) can be freed for other uses by cutting the surface-

mount jumper labeled “6 = Buzzer”.

3.11. Schematics and dimensions

Schematics

The schematic diagram for the Romi 32U4 Control Board is available as a PDF: Romi 32U4 Control

Board schematic diagram [https://www.pololu.com/file/0J1258/romi-32u4-control-board-schematic-diagram.pdf]

(646k pdf).

Dimensions

A basic dimension diagram for the Romi 32U4 Control Board is available as a PDF: Romi 32U4

Control Board dimension diagram [https://www.pololu.com/file/0J1259/romi-32u4-control-board-

dimensions.pdf] (604k pdf).

Dimensions that are not included in the above diagram can be measured from the following DXF,

which shows the main board outline along with the sizes and locations of all of the holes on the board:

Romi 32U4 Control Board drill guide [https://www.pololu.com/file/0J1260/rom04a-drill.dxf] (346k dxf).

The following picture shows the approximate dimensions of the Romi chassis [https://www.pololu.com/

category/203/romi-chassis-kits] which is intended to be used with the Romi 32U4 Control Board:

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 29 of 54

https://www.pololu.com/file/0J1258/romi-32u4-control-board-schematic-diagram.pdf
https://www.pololu.com/file/0J1258/romi-32u4-control-board-schematic-diagram.pdf
https://www.pololu.com/file/0J1259/romi-32u4-control-board-dimensions.pdf
https://www.pololu.com/file/0J1259/romi-32u4-control-board-dimensions.pdf
https://www.pololu.com/file/0J1259/romi-32u4-control-board-dimensions.pdf
https://www.pololu.com/file/0J1260/rom04a-drill.dxf
https://www.pololu.com/category/203/romi-chassis-kits
https://www.pololu.com/category/203/romi-chassis-kits

Basic dimension diagram of the Romi Chassis.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

3. Romi 32U4 Control Board Page 30 of 54

https://a.pololu-files.com/picture/0J7257.1200.png?3dd80f5552a36930e6a03ce4424a50a4
https://a.pololu-files.com/picture/0J7257.1200.png?3dd80f5552a36930e6a03ce4424a50a4

4. Assembling the Romi 32U4 Control Board

Control board additions

Most of the hardware on the Romi 32U4 Control Board consists of surface-mount components that are

already soldered to the board, but there are a few through-hole parts that you need to solder yourself.

1. Solder the buzzer to the top of the control board, matching its orientation to the printed

outline, then trim the excess length from the buzzer leads underneath the board.

2. Solder the two 1×6 low profile female headers for the encoders to the board. One female

header should be soldered on each side in the set of through-holes that matches to the

orientation you will use when soldering the corresponding male headers to the Romi

Encoder Pair Kit [https://www.pololu.com/product/3542]. We recommend using the set closer to

the edges of the Romi 32U4 Control Board.

3. Optional: If you plan to use an LCD [https://www.pololu.com/product/356] (not included) with the

control board, solder either the 2×7 female or 2×7 male LCD header to the set of pins labeled

“LCD” in the center of the control board. We generally recommend soldering the female

connector to the board and the male connector to the LCD if you do not have some particular

reason for doing it the other way.

4. Optional: If you plan to connect other headers or wires, consider soldering them now.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

4. Assembling the Romi 32U4 Control Board Page 31 of 54

https://www.pololu.com/product/3542
https://www.pololu.com/product/3542
https://www.pololu.com/product/356

It is still possible to solder the buzzer and LCD header after the control board has been mounted

on the chassis, but soldering them beforehand is easier and avoids the risk of inadvertently melting

the chassis with your soldering iron. The control board must be removed from the chassis before the

encoder headers can be soldered in.

The four battery contact terminals should be soldered to the control board after it is mounted on the

chassis, as described in the chassis assembly instructions. You will be able to remove the board and

battery contacts from the chassis as a single piece after soldering.

Assembling the chassis

Once the through-hole components are soldered to the Romi 32U4 Control Board, please follow

the instructions [https://www.pololu.com/docs/0J68/4] given in the Pololu Romi Chassis User’s Guide

[https://www.pololu.com/docs/0J68] to finish assembling the chassis, mounting the control board, and

soldering in the battery contacts.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

4. Assembling the Romi 32U4 Control Board Page 32 of 54

https://a.pololu-files.com/picture/0J7512.1200.png?87f5fec52b8bcb75f8bc48fb1ebdd9ba
https://a.pololu-files.com/picture/0J7512.1200.png?87f5fec52b8bcb75f8bc48fb1ebdd9ba
https://www.pololu.com/docs/0J68/4
https://www.pololu.com/docs/0J68
https://www.pololu.com/docs/0J68

5. Programming the Romi 32U4 Control Board
The Romi 32U4 Control Board is designed to be programmed over USB from the Arduino IDE

[https://www.arduino.cc/en/software/]. It can be programmed from Windows, Linux, and Mac OS X. The

ATmega32U4 on the control board comes preloaded with the same USB bootloader as the A-

Star 32U4 family [https://www.pololu.com/category/149/a-star-programmable-controllers] of general-purpose

programmable ATmega32U4 boards. The following sections will help you get started programming

your Romi 32U4 Control Board.

5.1. Installing Windows drivers

If you use Windows XP, you will need to have either Service Pack 3 or Hotfix KB918365

installed before installing the A-Star drivers. Some users who installed the hotfix have

reported problems that were solved by upgrading to Service Pack 3, so we recommend

Service Pack 3 over the hotfix.

Before you connect your Pololu A-Star 32U4 (or another of our 32U4 family of boards) to a computer

running Microsoft Windows, you should install its drivers:

1. Download the A-Star Windows Drivers [https://www.pololu.com/file/0J1240/a-star-

windows-1.3.0.0.zip] (7k zip) and extract the ZIP file to a temporary folder on your computer.

(These files are also available in the “drivers” directory from the A-Star repository on

GitHub [https://github.com/pololu/a-star].)

2. Open the “a-star-windows” folder. Right-click on “a-star.inf” and select “Install”.

3. Windows will ask you whether you want to install the drivers. Click “Install” (Windows 10, 8,

7, and Vista) or “Continue Anyway” (Windows XP).

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 33 of 54

https://www.arduino.cc/en/software/
https://www.arduino.cc/en/software/
https://www.pololu.com/category/149/a-star-programmable-controllers
https://www.pololu.com/category/149/a-star-programmable-controllers
https://www.pololu.com/file/0J1240/a-star-windows-1.3.0.0.zip
https://www.pololu.com/file/0J1240/a-star-windows-1.3.0.0.zip
https://github.com/pololu/a-star
https://github.com/pololu/a-star

4. Windows will not tell you when the installation is complete, but it should be done after a few

seconds.

Windows 10, Windows 8, Windows 7, and Windows Vista users: After installing the drivers, your

computer should automatically recognize the device when you connect it via USB. No further action

from you is required. However, the first time you connect an A-Star device to your computer, Windows

will take several seconds to recognize the device and configure itself properly. The first time you

program the device, Windows will again take several seconds to recognize the A-Star USB bootloader,

and this could cause the programming operation to fail the first time. Also, Windows will need to re-

recognize the device and the bootloader if you connect the board to another USB port that it has not

been connected to before.

Windows XP users: After installing the drivers, you will need to follow steps 5–9 for each new A-Star

device you connect to your computer. You will also need to follow these steps the first time you attempt

to program the device in order to make Windows recognize the bootloader, and when you connect the

device to a different USB port that it has not been connected to before.

5. Connect the device to your computer’s USB port.

6. When the “Found New Hardware Wizard” is displayed, select “No, not this time” and click

“Next”.

7. On the second screen of the “Found New Hardware Wizard”, select “Install the software

automatically” and click “Next”.

8. Windows XP will warn you again that the driver has not been tested by Microsoft and

recommend that you stop the installation. Click “Continue Anyway”.

9. When you have finished the “Found New Hardware Wizard”, click “Finish”.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 34 of 54

Programming the A-Star 32U4 from the
Arduino IDE.

COM port details

After installing the drivers and plugging in an A-Star, in the “Ports (COM & LPT)” category of the Device

Manager, you should see a COM port for the A-Star’s running sketch named “Pololu A-Star 32U4”.

You might see that the COM port is named “USB Serial Device” in the Device Manager instead of

having a descriptive name. This can happen if you are using Windows 10 or later and you plugged

the A-Star into your computer before installing our drivers for it. In that case, Windows will set up your

A-Star using the default Windows serial driver (usbser.inf), and it will display “USB Serial Device” as

the name for the port. The port will still be usable, but it will be hard to tell if it is the right one because

of the generic name shown in the Device Manager. We recommend fixing the names in the Device

Manager by right-clicking on each “USB Serial Device” entry, selecting “Update Driver Software…”,

and then selecting “Search automatically for updated driver software”. Windows should find the drivers

you already installed, which contain the correct name for the port.

If you are using Windows 10 or later and choose not to install the drivers, the A-Star will still be

usable. To tell which “USB Serial Device” in your Device Manager is the A-Star, double-click on each

one and look at the “Hardware Ids” property in the “Details” tab. An A-Star running a sketch will

have the ID USB\VID_1FFB&PID_2300&MI_00 , while an A-Star in bootloader mode will have the ID USB\

VID_1FFB&PID_0101 .

If you want to change the COM port numbers assigned to your A-Star, you can do so using the Device

Manager. Double-click a COM port to open its properties dialog, and click the “Advanced…” button in

the “Port Settings” tab.

5.2. Programming using the Arduino IDE

Our 32U4 family of boards can be programmed from the

popular Arduino integrated development environment

(IDE). The Arduino IDE is a cross-platform, open source

application that integrates a C++ code editor, the GNU

C++ compiler, and a program upload utility. To get started

programming your device with the Arduino IDE (version

1.6.4 or later), follow these steps:

1. Download the Arduino IDE from the Arduino

Download page [https://www.arduino.cc/en/

software/], install it, and start it.

2. In the Arduino IDE, open the File menu

(Windows/Linux) or the Arduino menu

(macOS) and select “Preferences”.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 35 of 54

https://a.pololu-files.com/picture/0J5280.1200.png?bf69c3b4670a3fb8177e28384e777540
https://a.pololu-files.com/picture/0J5280.1200.png?bf69c3b4670a3fb8177e28384e777540
https://www.arduino.cc/en/software/
https://www.arduino.cc/en/software/
https://www.arduino.cc/en/software/

3. In the Preferences dialog, find the “Additional Boards Manager URLs” text box (highlighted in

the picture below). Copy and paste the following URL into this box:

https://files.pololu.com/arduino/package_pololu_index.json

If there are already other URLs in the box, you can either add this one separated by a comma

or click the button next to the box to open an input dialog where you can add the URL on a

new line.

Adding a Boards Manager index for Pololu boards in the Arduino IDE’s Preferences dialog.

4. Click the “OK” button to close the Preferences dialog.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 36 of 54

5. In the Tools > Board menu, select “Boards Manager…” (at the top of the menu).

6. In the Boards Manager dialog, search for “Pololu A-Star Boards”.

7. Select the “Pololu A-Star Boards” entry in the list, and click the “Install” button.

8. After the installation finishes, click the “Close” button to close the Boards Manager dialog.

9. In the Tools > Board menu, select the “Pololu A-Star 32U4” entry. If you do not see your

device listed in the Board menu, try restarting the Arduino IDE.

Selecting the Pololu A-Star 32U4 in the Boards menu.

10. In the Tools > Port menu, select the port for the device. On Windows you can determine

what COM port the device is assigned to by looking at the “Ports (COM & LPT)” section of

the Device Manager. On Linux, the port name will begin with “/dev/ttyACM”. On Mac OS X,

the port name will begin with “/dev/tty.usbmodem”.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 37 of 54

Windows 10 Device Manager showing the A-Star’s virtual COM port.

11. Open up the “Blink” Arduino example, which can be found under File > Examples >

01.Basics > Blink. The code in this example will blink the yellow LED. When you select the

Blink example, a new Arduino IDE window will open up. It is OK to close the first window.

Selecting the Blink example in the Arduino IDE.

12. Press the “Upload” button to compile the sketch and upload it to the device. If everything goes

correctly, you will see the message “Done uploading” appear near the bottom of the window.

If you are using Windows and you have not previously programmed an A-Star device on this

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 38 of 54

USB port, then Windows might take several seconds to recognize the A-Star bootloader. The

bootloader times out after 8 seconds and goes back to running the sketch, so the upload

might fail if Windows does not recognize it quickly enough. If this happens, try again. If you

are using Windows XP and have not programmed an A-Star on this USB port, you will have to

go through the Found New Hardware Wizard again as described in the previous section, but

the second time you try to upload it should work. If the Arduino IDE has trouble connecting to

the port or using it, try unplugging the device, closing any programs that might be using the

serial port, restarting the Arduino IDE, and then plugging the device back in.

Uploading a sketch to the A-Star using the Arduino IDE.

13. If you uploaded the Blink sketch, then the yellow LED should be blinking once every two

seconds. However, we ship some A-Stars with that same example already programmed onto

it, so you might not be convinced that anything has changed. Try changing the delay values

in the sketch to something else and uploading again to see if you can change the speed of

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 39 of 54

the LED.

The A-Star 32U4 boards are similar enough to the Arduino Leonardo that you do not

actually have to install the add-on. If you want to, you can just select the “Arduino

Leonardo” board in the Arduino IDE. Note that if you upload a sketch to the device this

way, your computer will then recognize it as a Leonardo (for example, its entry in the

Windows Device Manager will display “Arduino Leonardo”).

After you succeed in programming your device from the Arduino IDE, there are many resources you

can use to learn more:

• The Arduino IDE has many examples [http://arduino.cc/en/Tutorial/HomePage] that can run on A-

Stars.

• The Arduino website has a Language Reference [http://arduino.cc/en/Reference/HomePage], a

wiki called the The Arduino Playground [http://playground.arduino.cc/], and other resources.

• The A-Star 32U4 boards are similar to the Arduino Leonardo [https://www.pololu.com/product/

2192] and Arduino Micro [https://www.pololu.com/product/2188], so you can search the Internet

for relevant projects that use one of those boards.

• The Related Resources section lists many more resources.

Disabling ModemManager in Linux

If you are using Linux and have trouble following the instructions above, your issue might be caused

by a program called ModemManager. This program automatically connects to serial ports and sends

modem commands to them, interfering with other software using those ports. You can run ps ax |

grep -i Modem to see if ModemManager is running. On Ubuntu, the command to permanently disable

ModemManager is:

sudo systemctl disable ModemManager

5.3. Programming using avr-gcc and AVRDUDE

This section explains how to program our 32U4 family of boards using the avr-gcc toolchain and

AVRDUDE. This section is intended for advanced users who do not want to use the Arduino IDE as

described in the previous section.

Getting the prerequisites

If you are using Windows, we recommend downloading WinAVR [http://winavr.sourceforge.net/], which

contains the avr-gcc toolchain and a command-line utility called AVRDUDE [http://www.nongnu.org/

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 40 of 54

http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
http://playground.arduino.cc/
https://www.pololu.com/product/2192
https://www.pololu.com/product/2192
https://www.pololu.com/product/2188
http://winavr.sourceforge.net/
http://www.nongnu.org/avrdude/

avrdude/] that can be used to upload programs to the A-Star bootloader. If the version of GNU Make

that comes with WinAVR crashes on your computer, we recommend using the Pololu version of GNU

Make [https://github.com/pololu/make/releases].

If you are using macOS, we recommend first installing Homebrew [https://brew.sh/]. Then run the

following commands to install AVRDUDE and homebrew-avr [https://github.com/osx-cross/homebrew-avr]:

brew install avrdude
xcode-select --install
brew tap osx-cross/avr
brew install avr-gcc

If you are using Linux, you will need to install avr-gcc, avr-libc, and AVRDUDE. Ubuntu users can get

the required software by running:

sudo apt-get install gcc-avr avr-libc avrdude

After you have installed the prerequisites, open a command prompt and try running these commands

to make sure all the required utilities are available:

avr-gcc -v
avr-objcopy -V
make -v
avrdude

If any of those commands fail, make sure the desired executable is installed on your computer and

make sure that it is in a directory listed in your PATH environment variable.

Compiling an example program

Copy the following code to a file named “main.c”:

In the same folder, create a file named “Makefile” with the following contents:

PORT=\\\\.\\GLOBALROOT\\Device\\USBSER000

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#define F_CPU 16000000
#include <avr/io.h>
#include <util/delay.h>

int main()
{

DDRC |= (1 << DDC7); // Make pin 13 be an output.
while(1)
{

PORTC |= (1 << PORTC7); // Turn the LED on.
_delay_ms(500);
PORTC &= ~(1 << PORTC7); // Turn the LED off.
_delay_ms(500);

}
}

?

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 41 of 54

http://www.nongnu.org/avrdude/
https://github.com/pololu/make/releases
https://github.com/pololu/make/releases
https://brew.sh/
https://github.com/osx-cross/homebrew-avr

MCU=atmega32u4
CFLAGS=-g -Wall -mcall-prologues -mmcu=$(MCU) -Os
LDFLAGS=-Wl,-gc-sections -Wl,-relax
CC=avr-gcc
TARGET=main
OBJECT_FILES=main.o

all: $(TARGET).hex

clean:
rm -f *.o *.hex *.obj *.hex

%.hex: %.obj
avr-objcopy -R .eeprom -O ihex $< $@

%.obj: $(OBJECT_FILES)
$(CC) $(CFLAGS) $(OBJECT_FILES) $(LDFLAGS) -o $@

program: $(TARGET).hex
avrdude -p $(MCU) -c avr109 -P $(PORT) -U flash:w:$(TARGET).hex

Make sure that the PORT variable in the Makefile is the name of the device’s virtual serial port. In

Windows, \\\\.\\GLOBALROOT\\Device\\USBSER000 should work if the A-Star is the only USB device

connected that is using the usbser.sys driver, but you can change it to be the actual name of the COM

port (e.g. COM13).

In a command prompt, navigate to the directory with the Makefile and main.c. If you run the command

make , the code should get compiled and produce a file named “main.hex”.

Programming

To program the A-Star device, you will need to get it into bootloader mode first. One way to do this is

to reset the AVR twice within 750 ms. Most of the boards in our 32U4 family have a reset button that

can be used to reset the board. On any of our 32U4 family of boards, a pushbutton can be connected

between the GND and RST pins to serve as a reset button, or you can use a wire. Once the device is

in bootloader mode, quickly run the command make program to program it. If you wait longer than 8

seconds, the A-Star bootloader will exit and the AVR will go back to running the user program.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

5. Programming the Romi 32U4 Control Board Page 42 of 54

6. Romi 32U4 Arduino library
The Romi 32U4 Control Board can be programmed from the Arduino IDE as described in the

preceding sections.

To help interface with all the on-board hardware on the control board, we provide the Romi32U4

library. The Romi32U4 library documentation [https://pololu.github.io/romi-32u4-arduino-library/] provides

detailed information about the library, and the library comes with several example sketches.

If you are using version 1.6.2 or later of the Arduino software (IDE), you can use the Library Manager

to install this library:

1. In the Arduino IDE, open the “Sketch” menu, select “Include Library”, then “Manage

Libraries…”.

2. Search for “Romi32U4”.

3. Click the Romi32U4 entry in the list.

4. Click “Install”.

If this does not work, you can manually install the library:

1. Download the latest release archive from GitHub [https://github.com/pololu/romi-32u4-arduino-

library] and decompress it.

2. Rename the folder “romi-32u4-arduino-library-master” to “Romi32U4”.

3. Move the “Romi32U4” folder into the “libraries” directory inside your Arduino sketchbook

directory. You can view your sketchbook location by opening the “File” menu and selecting

“Preferences” in the Arduino IDE. If there is not already a “libraries” folder in that location,

you should make the folder yourself.

4. After installing the library, restart the Arduino IDE.

After you install the Romi32U4 library, you can learn more about it by trying the included example

sketches and by reading the Romi32U4 library documentation [https://pololu.github.io/romi-32u4-arduino-

library/].

If you are using the Romi 32U4 Control Board with a Raspberry Pi, you might also want to make use

of our Raspberry Pi slave library for Arduino [https://github.com/pololu/pololu-rpi-slave-arduino-library],

which sets up the A-Star as an I²C slave and helps establish communication with a Raspberry Pi

master. See Section 3.7 for more information about the Raspberry Pi interface.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

6. Romi 32U4 Arduino library Page 43 of 54

https://pololu.github.io/romi-32u4-arduino-library/
https://github.com/pololu/romi-32u4-arduino-library
https://github.com/pololu/romi-32u4-arduino-library
https://pololu.github.io/romi-32u4-arduino-library/
https://pololu.github.io/romi-32u4-arduino-library/
https://github.com/pololu/pololu-rpi-slave-arduino-library

7. The Romi 32U4 USB interface
Our 32U4 family of boards are based on a single ATmega32U4 AVR microcontroller that runs the

user program and also handles the USB connection to the computer. The AVR has a full-speed USB

transceiver built into it and can be programmed to present almost any type of USB device interface to

the computer.

USB is an asymmetric system that consists of a single “host” connected to multiple “devices”. The host

is typically a personal computer. The ATmega32U4 can only act as a USB device, so an A-Star device

cannot be connected to other USB devices like mice and keyboards; it can only be connected to a

host such as your computer.

Programming an ATmega32U4 board using the Arduino IDE as described earlier will automatically

configure it as a composite device with a single virtual serial port. If you program the microcontroller

with an Arduino sketch that implements another USB device class, like HID or MIDI, you will see

additional child devices as well.

On a Windows computer, you can see the virtual serial port by going to your computer’s Device

Manager and expanding the “Ports (COM & LPT)” list. You should see a COM port labeled “Pololu A-

Star 32U4”. In parentheses after the name, you will see the name of the port (e.g. “COM3” or “COM4”).

Windows will assign a different COM port number to the device depending on what USB port you

plug it into and whether it is in bootloader mode or not. If you need to change the COM port number

assigned to the A-Star, you can do so using the Device Manager. Double-click on the COM port to

open its properties dialog, and click the “Advanced…” button in the “Port Settings” tab. From this dialog

you can change the COM port assigned to the device.

Windows 10 Device Manager showing the A-Star’s virtual COM port.

On a Windows computer, you can see the rest of the USB interface by going to the Device Manager,

selecting View > Devices by connection, and then expanding entries until you find the “Pololu A-Star

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

7. The Romi 32U4 USB interface Page 44 of 54

32U4” COM port. Near it, you should see the parent composite device.

The Windows 10 Device Manager in “Devices by connection” mode, showing
that the A-Star is a composite device.

On a Linux computer, you can see details about the USB interface by running lsusb -v -d 1ffb: in

a Terminal. The virtual serial port can be found by running ls /dev/ttyACM* in a Terminal.

On a Mac OS X computer, the virtual serial port can be found by running ls /dev/tty.usbmodem* in a

Terminal.

You can send and receive bytes from the virtual serial port using any terminal program that supports

serial ports. Some examples are the Serial Monitor in Arduino IDE, the Pololu Serial Transmitter

Utility [https://www.pololu.com/docs/0J23], Br@y Terminal [https://sites.google.com/site/terminalbpp/], PuTTY

[https://www.chiark.greenend.org.uk/~sgtatham/putty/], TeraTerm [http://ttssh2.osdn.jp/], Kermit

[http://www.columbia.edu/kermit/ck80.html], and GNU Screen [http://www.gnu.org/software/screen/]. Many

computer programming environments also support sending and receiving bytes from a serial port.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

7. The Romi 32U4 USB interface Page 45 of 54

https://www.pololu.com/docs/0J23
https://www.pololu.com/docs/0J23
https://sites.google.com/site/terminalbpp/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
http://ttssh2.osdn.jp/
http://www.columbia.edu/kermit/ck80.html
http://www.columbia.edu/kermit/ck80.html
http://www.gnu.org/software/screen/

8. The A-Star 32U4 Bootloader
Our 32U4 family of boards come with a USB bootloader that can be used in conjunction with the

Arduino IDE or AVRDUDE to load new programs onto the device. This section documents some

technical details of the bootloader for advanced users who want to better understand how it works. If

you just want to get started using your device, it is fine to skip this section.

The A-Star 32U4 Bootloader is based on the Caterina bootloader [https://github.com/arduino/Arduino/tree/

master/hardware/arduino/avr/bootloaders/caterina], which is the bootloader used on the Arduino Leonardo

[https://www.pololu.com/product/2192], Arduino Micro [https://www.pololu.com/product/2188] and several other

ATmega32U4 boards. The bootloader is open source and its source code [https://github.com/pololu/

a-star/tree/master/bootloaders/caterina] is available on GitHub. The bootloader occupies the upper four

kilobytes of the ATmega32U4’s program memory, leaving 28 KB for the user program. The

bootloader’s USB interface consists of a single virtual serial port that accepts the programming

commands defined in AVR109 [https://www.microchip.com/en-us/application-notes/an1644]. The bootloader

always runs first immediately after the AVR is reset.

Startup logic

The main difference between the A-Star 32U4 Bootloader and Caterina is in the startup logic. This

is the part of the bootloader that runs immediately after the AVR is reset, and it decides whether to

run the user program or run the rest of the bootloader. The startup logic of the Caterina bootloader is

designed so that when the RST line goes low, the bootloader will run. This means that if you want to

restart your program using the RST line, it will take 8 seconds before the bootloader times out waiting

for an upload and the sketch starts.

The A-Star 32U4 Bootloader has different startup logic that allows you to use the RST line to reset the

board with a smaller delay. If the RST line goes low once, the user program will run after a 750 ms

delay. If the RST line goes low twice within 750 ms, then the bootloader will run. (This behavior is the

same as on boards like SparkFun’s Pro Micro.)

The start-up logic of the A-Star 32U4 Bootloader is shown in the flowchart below:

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

8. The A-Star 32U4 Bootloader Page 46 of 54

https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/bootloaders/caterina
https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/bootloaders/caterina
https://www.pololu.com/product/2192
https://www.pololu.com/product/2192
https://www.pololu.com/product/2188
https://github.com/pololu/a-star/tree/master/bootloaders/caterina
https://github.com/pololu/a-star/tree/master/bootloaders/caterina
https://www.microchip.com/en-us/application-notes/an1644

The startup logic for the A-Star 32U4 bootloader.

Brown-out detection

Unlike many other ATmega32U4 boards, our 32U4 family of boards have brown-out detection enabled.

The brown-out threshold is 4.3 V, and if the voltage on VCC goes below this then the AVR will reset.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

8. The A-Star 32U4 Bootloader Page 47 of 54

https://a.pololu-files.com/picture/0J5267.1200.png?f81d9d87e99c4f93d7cb414728937165
https://a.pololu-files.com/picture/0J5267.1200.png?f81d9d87e99c4f93d7cb414728937165

The bootloader was designed so that the user program can detect brown-out resets. To do so, check

to see if the BORF bit in the MCUSR register is set, and then clear it later. Here is some example code

you could put in your setup function for detecting brown-out resets:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

pinMode(13, OUTPUT);
if (MCUSR & (1 << BORF))
{

// A brownout reset occurred. Blink the LED
// quickly for 2 seconds.
for(uint8_t i = 0; i < 10; i++)
{

digitalWrite(13, HIGH);
delay(100);
digitalWrite(13, LOW);
delay(100);

}
}
MCUSR = 0;

?

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

8. The A-Star 32U4 Bootloader Page 48 of 54

9. Reviving an unresponsive Romi 32U4
In order to load a new program onto your A-Star 32U4 device, you will need to get it into bootloader

mode and send programming commands to it over its virtual serial port using appropriate software. If

you are programming the device from the Arduino IDE, the sketch loaded onto the device will generally

support a special USB command for putting it in bootloader mode, and the Arduino IDE sends that

command automatically when you click the Upload button. However, you might find yourself in a

situation where the device is unresponsive and that method will not work. This can happen for two

reasons:

• You accidentally loaded a malfunctioning program onto the device that is incapable of

responding to the special USB command. For example, your program might be stuck in an

infinite loop with interrupts disabled.

• You loaded a program which uses a non-standard type of USB interface or no USB interface.

The following sections provide different procedures you can use to revive your device.

9.1. Reviving using the Arduino IDE

This section explains two special methods for programming an A-Star (or another of our 32U4 family

of boards) using the Arduino IDE in case your usual method of programming is not working. These

instructions were developed for the Arduino IDE versions 1.0.5-r2 and 1.6.0, and they might need to

be modified for future versions.

Reset button

If you have an A-Star 32U4 Micro, you should connect a momentary pushbutton

[https://www.pololu.com/product/1400] between the GND and RST pins to serve as a reset button. Other

boards in our 32U4 family have a reset button you can use. Alternatively, you can use a wire to

temporarily connect GND and RST together instead of using a reset button.

Resetting the board twice within 750 ms makes the board go into bootloader mode. The bootloader

will exit after 8 seconds and try to run the sketch again if it has not started receiving programming

commands. To revive the device, you need to make sure you start sending it programming commands

before the 8-second period is over.

In bootloader mode, the yellow LED (the one labeled LED 13) fades in and out. It is useful to look at

this LED so you can know what mode the microcontroller is in. Also, we recommend enabling verbose

output during upload using the Arduino IDE’s “Preferences” dialog. Looking at the LED and looking at

the verbose output during the following procedures will help you understand what is going on.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

9. Reviving an unresponsive Romi 32U4 Page 49 of 54

https://www.pololu.com/product/1400
https://www.pololu.com/product/1400

The uploading-before-bootloader method

The goal of the uploading-before-bootloader method is to select a non-existent serial port in the

Arduino IDE and then make sure the Arduino IDE enters the uploading phase before the

microcontroller goes into bootloader mode. This method has been tested on Arduino 1.0.5-r2 and

1.6.0. This method does not work on Arduino 1.5.6-r2 or Arduino 2.0.0 because those versions of

the IDE gives a fatal error message if the selected serial port is not present at the beginning of the

uploading phase (e.g. “Board at COM7 is not available.” or “Upload error: Failed uploading: no upload

port provided”).

1. Connect the device to your computer via USB.

2. In the “Tools” menu, open the “Board” sub-menu, and select “Pololu A-Star 32U4”.

3. In the “Tools” menu, open the “Port” sub-menu, and check to see if any ports are selected. If

the “Port” menu is grayed out or no ports in it are selected, that is good, and you can skip to

step 6.

4. Reset the board twice to get the board into bootloader mode. While the board is in bootloader

mode, quickly select the new serial port that corresponds to the bootloader in the “Port”

menu.

5. After 8 seconds, the bootloader will exit and attempt to run the sketch again. Wait for the

bootloader to exit. Verify that either the “Port” menu is grayed out or no ports in it are selected.

6. Click the Upload button. The Arduino IDE will compile your sketch and start uploading it.

7. As soon as the large status bar near the bottom of the IDE says “Uploading…”, reset the

board twice to get into bootloader mode.

The Arduino IDE will stay in the uploading phase for 10 seconds, waiting for a new serial port to

appear. Once the serial port of the bootloader appears, the Arduino IDE will connect to it and send

programming commands.

The bootloader-before-uploading method

The goal of the bootloader-before-uploading method is to select the bootloader’s virtual serial port in

the Arduino IDE and then make sure the board is in bootloader mode at the time when the Arduino

IDE enters the uploading phase.

1. Connect the device to your computer via USB.

2. In the “Tools” menu, open the “Board” sub-menu and check to see if the “Pololu A-Star 32U4

(bootloader port)” entry is visible. If this entry is visible, you can skip to step 6.

3. Using a text editor, open the file named boards.txt that provides the “Pololu A-Star” board

entries. In Windows, you can typically find this file in %LocalAppData%\Arduino15\

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

9. Reviving an unresponsive Romi 32U4 Page 50 of 54

packages\pololu-a-star\hardware\avr\. In Linux, you can typically find this file in

~/.arduino15/packages/pololu-a-star/hardware/avr/. On macOS, you can typically find

this file in ~/Library/Arduino15/packages/pololu-a-star/hardware/avr/. If you installed the

boards manually instead of using the Board Manager, you can find it in [sketchbook

location]/hardware/pololu/avr.

4. In the boards.txt file that you opened, find the lines at the bottom of the file that start with

#a-star32U4bp . Uncomment each of those lines by deleting the “#” character, and then save

the file.

5. Close the Arduino IDE and restart it.

6. In the “Tools” menu, open the “Board” sub-menu and select “Pololu A-Star 32U4 (bootloader

port)”. This entry is configured so that the Arduino IDE will send programming commands

directly to selected serial port, instead of trying to send a special USB command to the port

to get it into bootloader mode and then waiting for the new port to appear. By selecting this

entry, the timing of the programming process below becomes easier, especially on Windows.

7. Prepare the computer to show you a list of its virtual serial ports. If you are using Windows,

this means you should open the Device Manager. If you are on Linux or macOS, this means

you should open a Terminal and type the command ls /dev/tty* but do not press enter

until the board is in bootloader mode in the next step.

8. Reset the board twice to get the board into bootloader mode. While it is in bootloader mode,

quickly look at the list of serial ports provided by your operating system in order to determine

what port the bootloader is assigned to.

9. Reset the board twice to get the board into bootloader mode again. While the board is in

bootloader mode, quickly select the serial port of the bootloader in the Arduino IDE. The port

can be selected in the “Port” sub-menu under “Tools”.

10. In the Arduino IDE, click the “Verify” button to compile your sketch. This could make the timing

easier during the next step.

11. Press the reset button twice to get the board into bootloader mode again. As soon as you

see the yellow LED fading in and out, press the Upload button.

The Arduino IDE will compile your sketch and then upload it to the selected serial port.

If the compilation of the sketch takes longer than 8 seconds, then this procedure will fail because the

bootloader will time out and start trying to run the malfunctioning sketch again. If that happens, try the

procedure again using a simpler sketch such as the Blink example that can be found under File >

Examples > 01.Basics > Blink.

After reviving your device, be sure to change the Board setting back to “Pololu A-Star 32U4” and select

the right Port.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

9. Reviving an unresponsive Romi 32U4 Page 51 of 54

9.2. Reviving using AVRDUDE

This section explains a special method for reviving an A-Star (or another of our 32U4 family of boards)

using the command-line utility AVRDUDE [http://www.nongnu.org/avrdude/] in case your usual method of

programming is not working. AVRDUDE stands for “AVR Downloader/UploaDEr”, and it is compatible

with the A-Star bootloader.

If you have an A-Star 32U4 Micro, you should connect a momentary pushbutton

[https://www.pololu.com/product/1400] between the GND and RST pins to serve as a reset button. Other

boards in our 32U4 family have a reset button you can use. Alternatively, you can use a wire to

temporarily connect GND and RST together instead of using a reset button.

1. Connect the device to your computer via USB.

2. Prepare the computer to show you a list of its virtual serial ports. If you are using Windows,

this means you should open the Device Manager. If you are on Linux or Mac OS X, this

means you should open a Terminal and type the command ls /dev/tty* but do not press

enter until the board is in bootloader mode in the next step.

3. Press the reset button twice within 750 ms to make the AVR go into bootloader mode. You

should see the yellow LED fading in and out when the AVR is in bootloader mode. While it is

in bootloader mode, quickly look at the list of serial ports provided by your operating system

in order to determine what port the bootloader is assigned to.

4. Type the following command in your terminal and replace COM4 with the name of the

bootloader’s serial port, but do not press enter yet. This command will erase the

malfunctioning program on the device but preserve the bootloader.

avrdude -c avr109 -p atmega32U4 -P COM4 -e

5. Press the reset button twice within 750 ms to make the AVR go into bootloader mode.

6. Quickly run the command you typed previously. The command needs to be run within

8 seconds of starting the bootloader, or else the bootloader will exit and try to run the

malfunctioning program again.

By following the instructions above, the malfunctioning program on the device will be erased and the

device will stay in bootloader mode indefinitely. You can now load another program onto it using the

Arduino IDE or AVRDUDE.

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

9. Reviving an unresponsive Romi 32U4 Page 52 of 54

http://www.nongnu.org/avrdude/
https://www.pololu.com/product/1400
https://www.pololu.com/product/1400

10. Related resources
To learn more about using the Romi 32U4 Control Board, see the following list of resources:

• The Arduino IDE has many examples [http://arduino.cc/en/Tutorial/HomePage] that can run on the

Romi 32U4 Control Board (although note that the control board’s on-board hardware might

conflict with some of these examples).

• The Arduino website has a Language Reference [http://arduino.cc/en/Reference/HomePage], a

wiki called the The Arduino Playground [http://playground.arduino.cc/], and other resources.

• The Romi 32U4 Control Board uses the same microcontroller as the Arduino Leonardo

[https://www.pololu.com/product/2192] and Arduino Micro [https://www.pololu.com/product/2188], so

you can search the Internet for relevant projects and code examples that use one of those

boards.

• Atmel’s ATmega32U4 documentation [https://www.microchip.com/en-us/product/ATmega32u4]

has the ATmega32U4 datasheet and many related documents.

• AVR Libc Home Page [http://www.nongnu.org/avr-libc/]: this page documents the standard

library of functions that you can use with GNU C and C++ compilers for the AVR.

• Romi 32U4 Arduino library [https://github.com/pololu/romi-32u4-arduino-library]

• Romi 32U4 library documentation [https://pololu.github.io/romi-32u4-arduino-library/]

• LUFA – the Lightweight USB Framework for AVRs [http://www.fourwalledcubicle.com/

LUFA.php]

• WinAVR [http://winavr.sourceforge.net/]

• Microchip Studio for AVR and SAM Devices [https://www.microchip.com/en-us/tools-resources/

develop/microchip-studio]

• AVRDUDE [http://www.nongnu.org/avrdude/]

• AVR Freaks [https://www.avrfreaks.net/]

Datasheets for some of the components found on the Romi 32U4 Control Board are available below:

• ATmega32U4 documentation [https://www.microchip.com/en-us/product/ATmega32u4]

• Texas Instruments DRV8838 motor driver datasheet [https://www.pololu.com/file/0J806/

drv8838.pdf.redirect] (1k redirect)

• ST LSM6DS33 3D accelerometer and 3D gyro module datasheet [https://www.pololu.com/

file/0J1087/LSM6DS33.pdf] (1MB pdf)

• Texas Instruments TPS2113A power multiplexer datasheet [https://www.pololu.com/file/

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

10. Related resources Page 53 of 54

http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
http://playground.arduino.cc/
https://www.pololu.com/product/2192
https://www.pololu.com/product/2192
https://www.pololu.com/product/2188
https://www.microchip.com/en-us/product/ATmega32u4
http://www.nongnu.org/avr-libc/
https://github.com/pololu/romi-32u4-arduino-library
https://pololu.github.io/romi-32u4-arduino-library/
http://www.fourwalledcubicle.com/LUFA.php
http://www.fourwalledcubicle.com/LUFA.php
http://winavr.sourceforge.net/
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio
http://www.nongnu.org/avrdude/
https://www.avrfreaks.net/
https://www.microchip.com/en-us/product/ATmega32u4
https://www.pololu.com/file/0J806/drv8838.pdf.redirect
https://www.pololu.com/file/0J806/drv8838.pdf.redirect
https://www.pololu.com/file/0J1087/LSM6DS33.pdf
https://www.pololu.com/file/0J1087/LSM6DS33.pdf
https://www.pololu.com/file/0J771/tps2113a.pdf.redirect

0J771/tps2113a.pdf.redirect] (1k redirect)

Finally, we would like to hear your comments and questions on the Pololu Robotics Forum

[https://forum.pololu.com/]!

Pololu Romi 32U4 Control Board User’s Guide © 2001–2022 Pololu Corporation

10. Related resources Page 54 of 54

https://www.pololu.com/file/0J771/tps2113a.pdf.redirect
https://forum.pololu.com/
https://forum.pololu.com/

	Pololu Romi 32U4 Control Board User’s Guide
	1. Overview
	1.1. Included components
	1.2. What you will need
	Required accessories
	Assembly tools
	Optional tools
	Optional accessories

	1.3. Supported operating systems

	2. Contacting Pololu
	3. Romi 32U4 Control Board
	3.1. Microcontroller
	3.2. User interface
	LEDs
	Pushbuttons
	LCD
	Buzzer

	3.3. Motor drivers and encoders
	Motor drivers
	Quadrature encoders

	3.4. Inertial sensors
	Using the sensors

	3.5. Power
	Power switch circuit
	5 V and 3.3 V regulators
	Logic power selection
	Raspberry Pi power
	Power distribution

	3.6. Expansion areas
	3.7. Raspberry Pi interface and level shifters
	I²C communication
	General-purpose level shifters
	Powering the Raspberry Pi from the control board
	ID EEPROM

	3.8. Pin assignments
	3.9. Adding electronics
	Free I/O pins
	Freeing up more I/O pins
	I²C devices
	Power
	Ground
	3.9.1. Controlling a servo

	3.10. AVR timers
	3.11. Schematics and dimensions
	Schematics
	Dimensions

	4. Assembling the Romi 32U4 Control Board
	Control board additions
	Assembling the chassis

	5. Programming the Romi 32U4 Control Board
	5.1. Installing Windows drivers
	COM port details
	5.2. Programming using the Arduino IDE
	Disabling ModemManager in Linux

	5.3. Programming using avr-gcc and AVRDUDE
	Getting the prerequisites
	Compiling an example program
	Programming

	6. Romi 32U4 Arduino library
	7. The Romi 32U4 USB interface
	8. The A-Star 32U4 Bootloader
	Startup logic
	Brown-out detection

	9. Reviving an unresponsive Romi 32U4
	9.1. Reviving using the Arduino IDE
	Reset button
	The uploading-before-bootloader method
	The bootloader-before-uploading method

	9.2. Reviving using AVRDUDE

	10. Related resources

