

SumoBot® – Mini-Sumo Robotics
Assembly Documentation and Programming

VERSION 2.1

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2002- 2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc.

BASIC Stamp, Stamps in Class, Boe-Bot, SumoBot, SX-Key and Toddler are registered trademarks of Parallax, Inc.
If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must state
that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the trademark
name in each printed document or web page. HomeWork Board, Parallax, the Parallax logo, are trademarks of
Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state
that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the trademark name in each printed
document or web page. Other brand and product names are trademarks or registered trademarks of their respective
holders.

ISBN 1-928982-26-3

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

Preface · Page iii

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our
web site:

• BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in
Class educational program in their courses. The list provides an opportunity for both students and
educators to ask questions and get answers.

• Parallax Educators –Exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a
forum for educators to develop and obtain Teacher’s Guides.

• Translators – The purpose of this list is to provide a conduit between Parallax and those who
translate our documentation to languages other than English. Parallax provides editable Word
documents to our translating partners and attempts to time the translations to coordinate with our
publications.

• Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue
for a robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates.
The Boe-Bot®, Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with
Parallax assembly language SX-Key® tools and 3rd party BASIC and C compilers.

 Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents · Page v

Table of Contents

Preface ...vii
Recognitions ..vii
Audience...viii
Educational Concepts from the SumoBot...viii
Copyright and Reproduction ...ix

Chapter 1: Assemble the SumoBot ... 1
Let’s Build the SumoBot .. 2
Tools Required .. 2
About the Parts in the SumoBot Kit ... 2

Chapter 2: SumoBot Locomotion.. 11
How a Servo Works ... 11
Time Measurement and Voltage Levels .. 11
SumoBot Motion Test .. 16
Challenge Yourself .. 21

Chapter 3: SumoBot Sensors and Border Detection............................... 23
Line Sensor Theory ... 23
Our First Operational Sumo Program .. 29
Challenge Yourself .. 34

Chapter 4: Infrared Object Detection .. 35
Infrared Headlights .. 35
The FREQOUT Trick ... 36
Installing and Testing the IR Emitters/Detectors.. 37
Testing the IR Pairs ... 39
SumoBot Motion Control.. 41

Chapter 5: Basic Competition Code.. 45
Final Competition Notes .. 52

Appendix A: SumoBot Parts List... 53

Page vi · SumoBot – Mini Sumo Robotics

Appendix B: Standard Mini-Sumo Competition Rules 55

Appendix C: Mini-Sumo Ring .. 65

Appendix D: SumoBot PCB Schematic .. 67

Preface · Page vii

PREFACE
Like its human counterpart, robot Sumo was born and thrives in Japan. It was
introduced to the United States in the early 1990's by Dr. Mato Hattori. One of the early
American adopters of robot Sumo was noted Seattle Robotics Society member, Bill
Harrison, who organized some of the first U.S. robot Sumo tournaments.

While things started out very slowly, robot Sumo eventually caught on. Bill created a
"lightweight" class that matched the Japanese physical dimensions of 20 cm by 20 cm,
but reduced the mass from three kilograms (6.6 pounds) to one kilogram (2.2 pounds).
The intention was to reduce the sophistication of the components required to construct a
working Sumo robot. Those early contests didn't have much in the way of corporate
support with prizes, so Bill resorted to offering 30 hours of his own machine-shop
services to the winner.

As luck would have it, Bill's friend Robert Jorgensen won that first contest prize. Since
Robert already had a winning Sumo robot, he suggested that they build a smaller version,
about half the size and weight of the lightweight class to be used as a robot Sumo
demonstrator. The result of their work was a very small Sumo robot that measured just 8
cm by 8 cm and mass about 240 grams. Bill took that first small Sumo to a contest in
San Francisco and actually won the lightweight competition – against bigger and heavier
robots. The Mini-Sumo robot class was born.

The Mini-Sumo dimensions (10 cm x 10 cm) and mass (500 grams) were formalized and
Bill published adapted Japanese robot Sumo rules on his Sine Robotics web site
(mirrored on many other sites, and reprinted with permission in this document). Through
Bill's tireless efforts and nearly ten years of travel – often toting more than 20 robots in
his bags – Mini-Sumo robotics has grown to a favorite activity among robot clubs all
across the United States.

RECOGNITIONS
Many Mini-Sumo designs – especially the dual-wheel-and-scoop concept – can be traced
back to Bill Harrison's early efforts to promote Mini-Sumo robotics competition.
Parallax also recognizes Bill Boyer of the Dallas Personal Robotics Group for his version
of the dual-wheel-and-scoop design that was refined and developed into the Parallax
SumoBot robot described in this text.

Page viii · SumoBot – Mini Sumo Robotics

This text was authored by Jon Williams of Parallax, and contains additional material by
several contributors, including Andy Lindsay and Ken Gracey of Parallax, as well as Bill
Wong of Pennsylvania. Bill is an editor with Electronic Design magazine and a serious
BASIC Stamp® robotics enthusiast. Bill enjoys creating BASIC Stamp powered robots
with his daughter, who has gone on to win several county and state awards with her maze
solving robotics projects.

AUDIENCE
SumoBot was written for ages 12+ as a complimentary text to Parallax’s Robotics with
the Boe-Bot and Advanced Robotics with the Toddler student guides. Like all Parallax
texts, this series of experiments teaches new techniques and circuits with minimal overlap
between the other publications. The general topics introduced in this series are: basic
SumoBot locomotion under program control, edge avoidance, and opponent detection
based on a variety of sensor inputs, as well as navigation opponent hunting using
programmed artificial intelligence. Each topic is addressed in an introductory format
designed to impart a conceptual understanding along with some hands-on experience.
Those who intend to delve further into industrial technology, electronics or robotics are
likely to benefit significantly from initial experiences with these topics.

If your experience with the SumoBot® robot differs from our expectations, please let us
know at support@parallax.com.

EDUCATIONAL CONCEPTS FROM THE SUMOBOT
Educators frequently ask us at Parallax what can be learned from our different texts and
application notes. The SumoBot is considered an intermediate robotic project and
generally will instruct the following concepts:

• Interaction between mechanical and electrical systems, and the ability to tune
hardware or adjust software to obtain desired results.

• Intermediate programming skills with the BASIC Stamp 2 microcontroller. An
efficient SumoBot program makes use of efficient BASIC Stamp programming
techniques with BRANCH and LOOKDOWN, variable aliasing, general sound
programming practices (constant/variable definitions that allow for program
customization in just a few places rather than throughout an entire program).

• A step-wise process which starts with the basics and builds to something more
complex and ultimately more useful.

Preface · Page ix

Chapter 1: Assemble the SumoBot · Page 1

Chapter 1: Assemble the SumoBot

There's an old axiom among robot enthusiasts that states, "It's harder than it looks...."
Speaking from experience, we know this to be true. That said, the purpose of this
statement is not to alarm or dissuade the new robot builder, but simply to remind him or
her that robotics – even on a small scale – is a serious endeavor and shouldn't be taken
lightly. Patience is indeed a virtue. Follow the construction steps carefully and you'll
have your SumoBot running and ready to compete in about an hour or so.

The SumoBot is capable of doing any of the things other rolling robots can do. As you
learn to program the SumoBot for competition, you’ll become a more proficient – and
efficient – programmer and will learn to exploit the BASIC Stamp microcontroller’s
capabilities. The SumoBot demonstrates the importance of a PBASIC program that uses
constants and variables, as well state-oriented design. A well-designed program means
you can easily tune the software for the right mechanical control in just a few places
rather than rewriting your entire program.

A surface-mounted BASIC Stamp 2 microcontroller provides the intelligence for the
SumoBot. The BASIC Stamp is used throughout the Stamps in Class educational series,
and provides plenty of program space, speed and memory for use with a SumoBot.

The SumoBot is a purpose-built rolling robot, much like its general-purpose cousin the
Parallax Boe-Bot. While they share the same differential drive mechanism and the use of
sensors, the SumoBot design meets the specific criteria defined by Mini-Sumo
competition rules:

• Maximum [width and depth] dimensions of 10 cm by 10 cm
• Maximum mass of 500 grams

The standard SumoBot comes with two sets of sensors: two QTI line sensors to keep the
SumoBot on the playing surface and two sets of infrared emitters/detectors used to locate
its opponent. Advanced users may expand on the standard SumoBot design by adding
ultrasonic or IR distance measuring, tilt sensing and motor current sensing.

Page 2 · SumoBot – Mini Sumo Robotics

LET’S BUILD THE SUMOBOT
The SumoBot chassis design leaves little room for mechanical alteration; a requirement
to stay within standard Mini-Sumo competition rules. Where the student is encouraged to
explore changes is in the types of sensors used to detect the Sumo ring border and the
opponent and the software algorithms used to control the SumoBot robot’s behaviors.
The demonstration code provided with this text will focus on the standard sensors
provided in the SumoBot kit. Future supplements may be published that deal with
advanced sensors and techniques for incorporating them into the SumoBot robot’s control
logic.

TOOLS REQUIRED
A Parallax screwdriver is included in your kit. You may find a pair of needle-nose pliers
and a wire stripper to be useful (not included).

ABOUT PARTS IN THE SUMOBOT KIT
Appendix A includes a parts listing for the SumoBot robot kit. These instructions refer to
different pieces of hardware. If your SumoBot kit is missing a piece, Parallax will replace
it free of charge. Replacement Parallax Continuous Rotation servos and infrared emitters
and detectors are available to purchase online from the Parallax Component Shop
(www.parallax.com → Component Shop). If you need other parts replaced, please
contact sales@parallax.com or call toll free in the United States: 1-800-512-1024.

If you have trouble identifying the type of part referred to in these instructions, see the
color back cover of this text that shows each part with a colored picture and Parallax
stock code.

Chapter 1: Assemble the SumoBot · Page 3

Step #1
Install the Battery Box

Parts Required:

• Battery Box
• (2) 4/40 3/8" long

flat-head countersunk
machine screws

• (2) 4/40 nuts
• SumoBot chassis

Stand the SumoBot on its PCB mounting ears. Install the plastic battery pack using two
4/40 3/8” flat-head screws and nuts. The screws will be countersunk into the battery
pack when tightened and should be out of the way of the batteries.

Step #2
Install the Servo Motors

Parts Required:

• (2) Parallax
Continuous Rotation
Servos

• (8) 4/40 3/8" long
pan-head machine
screws

• (8) 4/40 nuts
• SumoBot chassis

Using four 4/40 3/8” pan-head machine screws and 4/40 nuts, attach each servo motor
to the chassis. The easiest way to do this is to hold the nut with one finger while
turning the screwdriver with the other hand.

Page 4 · SumoBot – Mini Sumo Robotics

Step #3
Install the Rear SumoBot
PCB Stand-offs

Parts Required:

• (2) 5/8" round
standoffs

• (2) 4/40 3/8" long pan-
head machine screws

• SumoBot chassis

Using a 4/40 3/8" pan-head machine screw, attach each stand-off to the rear of the
SumoBot chassis.

Step #4
Install the Front SumoBot
PCB Stand-offs

Parts Required:

• (2) 5/8" round
standoffs

• (2) 4/40 1" long pan-
head machine screws

• SumoBot PCB

Using a 4/40 1" pan-head machine screw, attach each standoff to the front mounting
holes of the SumoBot PCB.

Chapter 1: Assemble the SumoBot · Page 5

Step #5
Mounting the PCB

Parts Required:

• SumoBot PCB
• (2) 4/40 3/8" long

pan-head machine
screws

• (2) 1-1/4" round
stand-offs

• (2) Nylon washers
• SumoBot chassis

Feed the ends of the 1" long pan-head machine screws through the front mounting
holes on the SumoBot chassis. Secure the rear side of the SumoBot PCB to the 5/8"
standoffs with two 3/8" pan-head machine screws. Holding the chassis upside-down,
place a nylon washer onto the end of each 1" long pan-head machine screw, then
secure by threading on the 1-1/4" round standoff.

Step #6
Prepare the Wheels

Parts Required:

• (2) SumoBot wheels
• (2) SumoBot rubber

tires

Stretch a "tire" of each wheel and adjust so that the "tire" is centered across the wheel.

Nylon Washer

Page 6 · SumoBot – Mini Sumo Robotics

Step #7
Mount the Wheels

Parts Required:

• (2) Prepared
wheels/tires

• (2) Black servo-horn
screws

• SumoBot chassis

Carefully press each prepared wheel onto the servo splines. Secure each wheel with
the small black Phillips head screw.

Step #8
Mount the Scoop

Parts Required:

• SumoBot scoop
• (2) 4/40 1/4" long pan-

head machine screws
• (2) 4/40 nuts
• SumoBot chassis

Using two 4/40 1/4” pan-head machine screws and 4/40 nuts, attach the scoop to the
SumoBot chassis. Carefully center the scoop before tightening the screws and nuts.

Chapter 1: Assemble the SumoBot · Page 7

Step #9
Install Line Sensor
Wires

Parts Required:

• (2) 10" 3-pin
extension cables

• SumoBot chassis

Carefully feed each 10" 3-pin extension cable through the center chassis slot.

Step #10
Install the QTI Line
Sensors

Parts Required:

• (2) QTI line sensors
• (2) 4/40 1/4" long

pan-head machine
screws

• SumoBot chassis

Using two 4/40 1/4” pan-head machine screws, attach the QTI line sensors to the 1-
1/4" round stand-offs. Connect the ends of the 10" 3-pin extension cables to the QTI
line sensors, noting the polarity markings B[lack]-R[ed]-W[hite] on the QTI sensors.

Page 8 · SumoBot – Mini Sumo Robotics

Step #11
Make the Connections

Plug the servo motors and QTI
sensors into the SumoBot PCB
connectors as indicated below.
Note that the "B" pin on each
connector is for the black wire.

X7 = Left Servo Motor
X6 = Right Servo Motor
X5 = Left QTI Line Sensor
X4 = Right QTI Line Sensor

Connect the battery pack wires to
SumoBot PCB connector X1.
The battery pack's white-striped
lead connects to the + terminal.

Note: Previous versions of the SumoBot PCB
were labeled "SumoBoard" instead of
"SumoBot." These boards are electrically
identical to the SumoBot PCB illustrated.

When using SumoBot PCBs with a revision
code of C or earlier, the Vs1 and Vs2 (servo
ground) connections must be jumpered to
Vss for proper servo operation.

Chapter 1: Assemble the SumoBot · Page 9

Step #12
Powering the SumoBot

The SumoBot PCB has a three-position power switch. The state of each position is
shown below. The three-position switch has a middle position that powers the entire
circuit except the servos. A complete schematic of the SumoBot PCB is included in
Appendix D.

Position 0 – No Power
Position 1 – Power PCB
Position 2 – Power PCB & Servos

Chapter 2: SumoBot Locomotion · Page 11

Chapter 2: SumoBot Locomotion

The first task of any Mini-Sumo robot is to move – most competition rules do not allow
the robot to stop (without competitor contact) for more than a few seconds. In this
experiment you will learn how to get the SumoBot moving and learn to take control over
its motion.

HOW A SERVO WORKS
Normal (un-modified) hobby servos are very popular for controlling the steering systems
in radio-controlled cars, boats and planes. These servos are designed to control the
position of something such as a steering flap on a radio-controlled airplane. Their range
of motion is typically 90° to 270°, and they are great for applications where inexpensive,
accurate high-torque positioning motion is required. The position of these servos is
controlled by an electronic signal called a pulse train, which you’ll get some first hand
experience with shortly. An un-modified hobby servo has built-in mechanical stoppers to
prevent it from turning beyond its 90° or 270° range of motion. It also has internal
mechanical linkages for position feedback so that the electronic circuit that controls the
DC motor inside the servo knows where to turn to in response to a pulse train.

SumoBot motion is controlled using two pre-modified Parallax Continuous Rotation
servo motors using a process called differential drive. The modification "tricks" the
feedback circuitry so that the servo will stop only when it receives a centering command;
it also allows the servo to continuously rotate in either direction. When both motors are
turning in the same direction, the SumoBot will move in that direction. When the
SumoBot servo motors turn in different directions, the chassis will rotate. The rate of
movement or rotation is determined by motor speeds.

TIME MEASUREMENTS AND VOLTAGE LEVELS
Throughout this text, amounts of time will be referred to in units of seconds (s),
milliseconds (ms), and microseconds (µs). Seconds are abbreviated with the lower-case
letter “s”. So, one second is written as 1 s. Milliseconds are abbreviated as ms, and it
means one one-thousandth of a second. One microsecond is one one-millionth of a
second. Figure 2.1 shows how Milliseconds and Microseconds equate in terms of both
fractions and scientific notation.

Page 12 · SumoBot – Mini Sumo Robotics

Figure 2.1: Milliseconds and Microseconds Details

s3-101s
1000

1ms1 ×==

s6-101s
1,000,000

1s1 ×==µ

A voltage level is measured in volts, which is abbreviated with an upper case V. The
SumoBot PCB has sockets labeled Vss, Vdd, and Vin. Vss is called the system ground or
reference voltage. When the battery pack is plugged in, Vss is connected to its negative
terminal. Vin is unregulated 6 volts (from four AA batteries) and it is connected to the
positive terminal of the battery pack. Vdd is regulated to 5 volts by the SumoBot PCB’s
onboard voltage regulator, and it will be used with Vss to supply power to circuits built
on the SumoBot PCB’s breadboard.

Figure 2.2: SumoBot PCB Voltage Labels

Vss = 0V (ground)
Vdd = 5V (regulated)
Vin = 6V (unregulated)

Only use the Vdd sockets above the SumoBot PCB's breadboard for the
activities in this workbook. Do not use the Vdd on the 20-pin App-Mod
header.

The control signal the BASIC Stamp sends to the servo’s control line is called a “pulse
train,” and an example of one is shown in Figure 2.3. The BASIC Stamp can be

Chapter 2: SumoBot Locomotion · Page 13

programmed to produce this waveform using any of its I/O pins. In this example, the
BASIC Stamp sends a 1500 µs pulse to P13 (left servo) and P12 (right servo). When the
pulse is done being executed the signal pin is low. Then, the BASIC Stamp creates a 20
ms pause.

Figure 2.3: Servo Pulse Train Analysis

This pulse train has a 1500 µs high time and a 20 ms low time. The high time is the main
ingredient for controlling a servo’s motion, and it is most commonly referred to as the
pulse width. Since these pulses go from low to high (0V to 5V) for a certain amount of
time, they are called positive pulses. Negative pulses would involve a resting state that’s
high with pulses that drop low.

The ideal pause between servo pulses is 20 milliseconds, but can be anything between 10
and 40 milliseconds without adversely affecting the servo’s performance.

The BASIC Stamp 2’s PULSOUT instruction works in increments of 2 micro-
seconds. For example, the following snippet of code creates a 1500 µs pulse:

 PULSOUT P13, 750 ' 1500 us pulse on pin 13

A pulse width of 1500 µs (normally, the centering command) will cause the modified
servo to stop. To make the servo turn we must give change the pulse width toward either
end of the standard control range of 1000 to 2000 µs. Since the right side servo motor is
physically mirrored from the left, its control signals are as well. Figure 2.3 shows the
control signaling for the SumoBot servos.

Page 14 · SumoBot – Mini Sumo Robotics

Figure 2.4: SumoBot Servo Control Pulses

For pulses between the 1500 µs stop point and the extremes on either end of the control
range, there is a degree of speed control. This range is not linear, however, and at pulse
widths just outside the stop band, servo current increases dramatically. At some points in
the control range, the servo current can go high enough to cause an excessive load on the
BASIC Stamp's regulator circuitry, causing it to reset or behave erratically. For Mini-
Sumo competition, precise speed control is not a requirement. The goal is to find the
opponent and move quickly toward him.

Open the BASIC Stamp Windows Editor.1 Load the following program that will be used
to align the SumoBot motors.2

1 The Parallax BASIC Stamp Manual 2.x includes a “Quick Start” section that details how to open and

launch the BASIC Stamp Windows Editor.
2 Source code for this text is available in a zipped file for download from www.parallax.com.

Chapter 2: SumoBot Locomotion · Page 15

' SumoBot_2.1_Motor_Align.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LMotor PIN 13 ' left servo motor
RMotor PIN 12 ' right servo motor

' -----[Constants]---

LStop CON 750 ' left motor stop
RStop CON 750 ' right motor stop

' -----[Initialization]--

Reset:
 LOW LMotor ' initialize motor outputs
 LOW RMotor

' -----[Program Code]--

Main:
 DO
 PULSOUT LMotor, LStop ' stop left
 PULSOUT RMotor, RStop ' stop right
 PAUSE 20
 LOOP

 END

Move the SumoBot power switch to position 2, and then download the code using the
Run command from the Run menu, or by pressing the ► button on the toolbar. As soon
as the program is downloaded, watch for wheel movement. If either motor turns, insert a
small screwdriver into the adjustment port of the servo and adjust the centering
potentiometer until the motor stops. Figure 2.5 shows the location of the servo
adjustment ports.

Page 16 · SumoBot – Mini Sumo Robotics

Figure 2.5: SumoBot Servo Adjustment Ports

Don't worry, for the moment, how the program works; that will become clear in the next
section.

SUMOBOT MOTION TEST
With the motors aligned, it is time to test the SumoBot for essential motion control. Load
the following program into the BASIC Stamp Editor, and then download it to the
SumoBot:

' SumoBot_2.2_Motor_Test.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LMotor PIN 13 ' left servo motor
RMotor PIN 12 ' right servo motor

' -----[Constants]---

LFwdFast CON 1000 ' left motor fwd; fast
LFwdSlow CON 800 ' left motor fwd; slow
LStop CON 750 ' left motor stop
LRevSlow CON 700 ' left motor rev; slow

Chapter 2: SumoBot Locomotion · Page 17

LRevFast CON 500 ' left motor rev; fast

RFwdFast CON 500 ' right motor fwd; fast
RFwdSlow CON 700 ' right motor fwd; slow
RStop CON 750 ' right motor stop
RRevSlow CON 800 ' right motor rev; slow
RRevFast CON 1000 ' right motor rev; fast

' -----[Variables]---

pulses VAR Byte ' servo pulses counter

' -----[Initialization]--

Reset:
 LOW LMotor ' initialize motor outputs
 LOW RMotor
 PAUSE 2000 ' time to disconnect cable

' -----[Program Code]--

Main:
 FOR pulses = 1 TO 65 ' fwd slow, ~12 inches
 PULSOUT LMotor, LFwdSlow
 PULSOUT RMotor, RFwdSlow
 PAUSE 20
 NEXT

 FOR pulses = 1 TO 30 ' pivot 90 on left wheel
 PULSOUT LMotor, LStop
 PULSOUT RMotor, RFwdSlow
 PAUSE 20
 NEXT

 FOR pulses = 1 TO 25 ' fwd fast
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RFwdFast
 PAUSE 20
 NEXT

 FOR pulses = 1 TO 60 ' pivot 180 on right wheel
 PULSOUT LMotor, LFwdSlow
 PULSOUT RMotor, RStop
 PAUSE 20
 NEXT

 FOR pulses = 1 TO 50 ' fwd fast
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RFwdFast
 PAUSE 20
 NEXT

Page 18 · SumoBot – Mini Sumo Robotics

 FOR pulses = 1 TO 55 ' spin turn - clockwise
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 NEXT

Hold_Position:
 DO
 PULSOUT LMotor, LStop
 PULSOUT RMotor, RStop
 PAUSE 20
 LOOP

 END

As soon as the program is downloaded, remove the programming cable from the
SumoBot. This program runs through key motion tests, and then stops the SumoBot.
When the SumoBot stops moving after its final spin, move the power switch to position 0
(off). If it doesn't move at all, you may have set the power switch to position 1. You
don't have to download the program again if this happened; simply move the power
switch to position 2 and then press the Reset button to restart the program.

HOW IT WORKS
This program code starts – as well-coded programs do – by defining connection and
value constants used in the program. This methodology creates programs that are easier
to read, maintain, and debug. In the case of the SumoBot, the motor connections are on
pins 13 (left) and 12 (right). For robot Sumo, we don't need infinite speed control;
simply stop, slow and fast (these are relative terms, and will vary from servo type to
servo type). Speed constants for each motor are defined and can be tuned for motor
variances and when changing motor types.

The initialization section (labeled Reset as this is the first code that runs after the
SumoBot is reset) ensures that the motor control outputs are setup to provide the correct
pulse polarity to the servos, and then introduces a two-second delay to allow the
programming cable to be removed from the SumoBot. It's best to disconnect the
SumoBot while doing any movement testing.

Chapter 2: SumoBot Locomotion · Page 19

The core of the program, at the label Main, is broken down into several sections:

• Move forward slowly
• Pivot turn 90 degrees on left wheel
• Move forward quickly
• Pivot turn 180 degrees on right wheel
• Move forward quickly
• Spin turn (rotates SumoBot around its own center) 360 degrees
• Hold position

Note: If the SumoBot starts by backing up, the motor connections are reversed. Move
the power switch to position 0 (off), change the connections, and then move the power
switch back to position 2 to retest. You could change the firmware as well, but then
you'll need to change all the SumoBot programs included in this kit.

Each movement section is constructed using a FOR-NEXT control loop to give the
motors enough time to perform the actual movements. You may notice that the SumoBot
does not move precisely as the code dictates that it should. Do not be alarmed. Small
variations in motors may cause the SumoBot to veer slightly to one side or the other
when it should be moving straight.

This condition can be corrected (more precisely, tuned) by modifying the speed constants
for the motors. If, for example, the SumoBot veers to the left when it should be moving
straight, you may want to reduce the right motor speed a bit to correct the path of travel.

The same holds true for the turns. In this case, the motor speed is not the culprit. To
adjust turns, modify the FOR-NEXT loop end-point value and retest. If the SumoBot
turns too much, reduce the loop end-point. If it doesn't turn quite enough, increase the
loop end-point value.

Page 20 · SumoBot – Mini Sumo Robotics

Figure 2.6: BASIC Stamp Editor with
SumoBot_ 2.2_Motor_Test.BS2

Note: The figure above shows the edit window set to split-pane mode so that two sections
of the program may be viewed simultaneously.

Chapter 2: SumoBot Locomotion · Page 21

CHALLENGE YOURSELF

1. Modify the motor speed constants so that your SumoBot travels straight at low
and high speeds.

2. Determine the proper loop count to cause the SumoBot to turn 30 degrees, 45
degrees and 90 degrees.

3. Using the information in # 2 above, see if you can program the SumoBot to
travel in the following patterns:

o Square
o Triangle
o Figure-8

Chapter 3: SumoBot Sensors and Border Detection · Page 23

Chapter 3: SumoBot Sensors and Border Detection

Once the SumoBot is moving, the next task is to scan the playing surface to make sure
that it doesn't drive itself out of the ring. The task is accomplished by two specialized
line detection sensors called QTIs. The QTI uses a reflective infrared sensor to allow the
SumoBot to "look" for the ring's border.

LINE SENSOR THEORY
The Parallax QTI uses a QRD1114 infrared (IR) reflective sensor to determine the
reflectivity of the surface below it. When the SumoBot is over the black playing field or
start lines (Shikiri), the reflectivity is very low; when the QTI is over the white border
(Tawara), the reflectivity is very high and will cause a different reading from the sensor.

Figure 3.1 shows the schematic for the Parallax QTI line sensor.

Figure 3.1: QTI Line Sensor Schematic

The QTI sensor is activated by placing 5V (Vdd) on the W pin. This will cause current to
flow through the 470 Ω resistor to the LED side of the QRD1114. IR light reflecting of
the surface below will cause a change in the ability for current to flow through the
phototransistor side of the QRD1114. The transistor, in effect, behaves like an IR
controlled resistance.

The BASIC Stamp has a specific command designed to read a variable resistance called
RCTIME. When coupled with a capacitor, the BASIC Stamp can measure a variable
resistance by timing the charge or discharge rate of the connected capacitor.

Page 24 · SumoBot – Mini Sumo Robotics

After the QTI is activated, the capacitor is discharged by bringing the R line high and
holding it for about one millisecond. RCTIME is then used to measure the time required
to charge the capacitor to a specified level. This timing will be controlled by the current
flow through the phototransistor side of the QRD1114. When over the black playing
field, the phototransistor current flow will be very low so the capacitor will take a long
time to charge, hence RCTIME will return a large value. When the QTI is positioned over
the white border line, the current flow through the phototransistor is high, so the capacitor
charge time is fast and RCTIME returns a small value.

Load and run program 3.1 to test and evaluate the QTI sensors.

' SumoBot_3.1_Line_Sensor_Test.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LLinePwr PIN 10 ' left line sensor power
LLineIn PIN 9 ' left line sensor input
RLinePwr PIN 7 ' right line sensor power
RLineIn PIN 8 ' right line sensor input

' -----[Variables]---

lLine VAR Word ' left sensor raw reading
rLine VAR Word ' right sensor raw reading

' -----[Program Code]--

Main:
 DO
 GOSUB Read_Left
 GOSUB Read_Right

 DEBUG HOME,
 "Left ", TAB, "Right", CR,
 "-----", TAB, "-----", CR,
 DEC lLine, CLREOL, TAB, DEC rLine, CLREOL

 PAUSE 100
 LOOP

 END

' -----[Subroutines]---

Chapter 3: SumoBot Sensors and Border Detection · Page 25

Read_Left:
 HIGH LLinePwr ' activate sensor
 HIGH LLineIn ' discharge QTI cap
 PAUSE 1
 RCTIME LLineIn, 1, lLine ' read sensor value
 LOW LLinePwr ' deactivate sensor
 RETURN

Read_Right:
 HIGH RLinePwr ' activate sensor
 HIGH RLineIn ' discharge QTI cap
 PAUSE 1
 RCTIME RLineIn, 1, rLine ' read sensor value
 LOW RLinePwr ' deactivate sensor
 RETURN

HOW IT WORKS
This program starts by activating the left QTI line sensor, then bringing its R line high to
discharge the onboard capacitor (both sides of the capacitor will be at 5v, hence it is
discharged). A one millisecond PAUSE gives the capacitor plenty of time to discharge
through the 220 Ω resistor.

After the capacitor is fully discharged, RCTIME makes the R line an input and allows the
capacitor to begin to charge (the plate connected to the R line will move toward Vss).
While the capacitor is charging, the RCTIME instruction increments an internal counter.
When the BASIC Stamp sees approximately 1.4 volts on the R line, the counter value is
placed in the output variable called lLine. At this point the process is complete and the
QTI is deactivated.

The process is repeated for the right-side QTI and DEBUG is used to display the values.
Figure 3.2 shows the output of the program with the left QTI over the Tawara (white
border) line and the right QTI over the black playing field. Notice the dramatic
difference between the two values.

Run the program (using Position 1 of the power switch) and record the values from your
SumoBot QTI sensors in the space below:

 Black White
Left QTI
Right QTI

Page 26 · SumoBot – Mini Sumo Robotics

Figure 3.2: QTI Test Program Output

Don't worry about small discrepancies between the QTI values over the same color – this
is due to minor variations in components and won't adversely affect the SumoBot robot’s
performance.

For convenience in a competition program, the QTI code should be moved into a
subroutine that can be called from any point in the program. The routine should also be
developed to return either a True (1) or False (0) value if the QTI is over the Sumo ring
border. To see this in action, load and run program 3.2.

' Mini_Sumo_3.2_Line_Sensor_Read.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LLinePwr PIN 10 ' left line sensor power
LLineIn PIN 9 ' left line sensor input
RLinePwr PIN 7 ' right line sensor power
RLineIn PIN 8 ' right line sensor input

' -----[Variables]---

lLine VAR Word ' left sensor raw reading
rLine VAR Word ' right sensor raw reading
lineBits VAR Nib ' decoded sensors value

Chapter 3: SumoBot Sensors and Border Detection · Page 27

lbLeft VAR lineBits.BIT1
lbRight VAR lineBits.BIT0

' -----[Program Code]--

Main:
 GOSUB Read_Line_Sensors
 DEBUG HOME, "LR", CR, ' show sensor readings
 BIN2 lineBits, CR, CR

 SELECT lineBits ' display actions
 CASE %00
 DEBUG "Continue forward", CLREOL
 CASE %01
 DEBUG "Spin Left", CLREOL
 CASE %10
 DEBUG "Spin Right", CLREOL
 CASE %11
 DEBUG "Back up and turn around", CLREOL
 ENDSELECT

 GOTO Main
 END

' -----[Subroutines]---

Read_Line_Sensors:
 HIGH LLinePwr ' activate sensors
 HIGH RLinePwr
 HIGH LLineIn ' discharge caps
 HIGH RLineIn
 PAUSE 1
 RCTIME LLineIn, 1, lLine ' read left sensor
 RCTIME RLineIn, 1, rLine ' read right sensor
 LOW LLinePwr ' deactivate sensors
 LOW RLinePwr

 ' convert readings to bits
 LOOKDOWN lLine, >=[1000, 0], lbLeft ' 0 = black, 1 = line
 LOOKDOWN rLine, >=[1000, 0], lbRight
 RETURN

HOW IT WORKS
This program takes the working QTI code and incorporates into a unified subroutine.
The end of the subroutine converts the analog values from the QTI sensors to a single
nibble value that contains the status of both sensors. Incorporating both sensor readings
into a single variable streamlines the SumoBot robot's border avoidance logic.

Page 28 · SumoBot – Mini Sumo Robotics

The technique for converting the raw sensor reading to a bit value takes advantage of the
{optional} comparison parameter with the LOOKDOWN function. Without the comparison
parameter, LOOKDOWN uses equality to scan its table for a value match. By using the
comparison parameter, we can test a range of values with a single table entry.

This line:

 LOOKDOWN lLine, >=[1000, 0], lbLeft

will put 0 into lbLeft if lLine is greater or equal to 1000, otherwise it will but 1 in lbLine
(lLine is between 0 and 999). This works because the comparison parameter is >= and
the first table entry [index 0] is 1000. LOOKDOWN will transfer the index to the output
variable as soon as a match is found. If the sensor value is less than 1000 (as when on the
border), the index value of 1 is moved into lbLeft.

We could use an IF-THEN-ELSE coding technique to accomplish the same thing:

 Left_Conv:
 IF (lLine >= 1000) THEN
 lbLeft = 0
 ELSE
 lbLeft = 1
 ENDIF

As you can see, using LOOKDOWN with the comparison parameter is the more elegant
approach. You may be wondering why the value 1000 was used as the black level
threshold. It was selected to allow the QTI to be affected by external light and still return
an accurate reading. Extra light falling on the playing surface will reduce the QTI output
values. By using a value about one-fourth the normal black reading, the program has
plenty of margin for lighting variability. Now let's examine what happens with the output
values.

The bit variables lbLeft and lbRight are aliased into lineBits – this means a change in either
will cause a change in lineBits. We will use this variable with the SELECT-CASE
structure to determine and display which action to take based on the QTI sensor values.

Chapter 3: SumoBot Sensors and Border Detection · Page 29

The movement logic is controlled by SELECT-CASE. The purpose of SELECT-CASE is
to replace several IF-THEN commands that would examine the same control variable.
So, the following code structure:

 SELECT lineBits ' display actions
 CASE %00
 DEBUG "Continue forward", CLREOL
 CASE %01
 DEBUG "Spin Left", CLREOL
 CASE %10
 DEBUG "Spin Right", CLREOL
 CASE %11
 DEBUG "Back up and turn around", CLREOL
 ENDSELECT

replaces these statements, as well as the program labels and associated code for them:

 IF (lineBits = %00) THEN Go_Fwd
 IF (lineBits = %01) THEN Spin_Left
 IF (lineBits = %10) THEN Spin_Right
 IF (lineBits = %11) THEN About_Face

and accomplishes the same objective. With simple programs like this one, using
SELECT-CASE is a clean solution. As programs grow, we'll examine other instructions
(like BRANCH) to replace multiple IF-THEN comparisons and route the program to
desired control routines. Keep in mind that program 3.2 doesn't actually move the
SumoBot. It simply displays the action that should be taken given the QTI inputs.

OUR FIRST OPERATIONAL SUMO PROGRAM
With the ability to move and to see the border on the Sumo ring, we have enough to
create a working Mini-Sumo program. Add a 470 Ω resistor and LED to the breadboard
as shown in Figures 3.3 and 3.4, and then load and run program 3.3.

Figure 3.3: Start LED Schematic

Page 30 · SumoBot – Mini Sumo Robotics

Figure 3.4: Start LED Connections on the SumoBot PCB

' SumoBot_3.3_Simple_Mini_Sumo.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LMotor PIN 13 ' left servo motor
RMotor PIN 12 ' right servo motor

LLinePwr PIN 10 ' left line sensor power
LLineIn PIN 9 ' left line sensor input
RLinePwr PIN 7 ' right line sensor power
RLineIn PIN 8 ' right line sensor input

StartLED PIN 0 ' display start delay

' -----[Constants]---

LFwdFast CON 1000 ' left motor fwd; fast
LFwdSlow CON 800 ' left motor fwd; slow
LStop CON 750 ' left motor stop
LRevSlow CON 700 ' left motor rev; slow
LRevFast CON 500 ' left motor rev; fast

RFwdFast CON 500 ' right motor fwd; fast
RFwdSlow CON 700 ' right motor fwd; slow

Chapter 3: SumoBot Sensors and Border Detection · Page 31

RStop CON 750 ' right motor stop
RRevSlow CON 800 ' right motor rev; slow
RRevFast CON 1000 ' right motor rev; fast

' -----[Variables]---

lLine VAR Word ' left sensor raw reading
rLine VAR Word ' right sensor raw reading
lineBits VAR Nib ' decoded sensors value
lbLeft VAR lineBits.BIT1
lbRight VAR lineBits.BIT0

pulses VAR Byte ' counter for motor control
temp VAR Byte

' -----[EEPROM Data]---

RunStatus DATA $00 ' run status

' -----[Initialization]--

Reset:
 READ RunStatus, temp ' read current status
 temp = ~temp ' invert status
 WRITE RunStatus, temp ' save for next reset
 IF (temp > 0) THEN END ' run now?

Start_Delay:
 HIGH StartLED ' show active
 PAUSE 5000 ' start delay
 LOW StartLED ' LED off

' -----[Program Code]--

Main:
 GOSUB Read_Line_Sensors

 ' sumo movement
 BRANCH lineBits, [Go_Fwd, Spin_Left, Spin_Right, About_Face]

Go_Fwd:
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RFwdFast
 GOTO Main

Spin_Left:
 FOR pulses = 1 TO 20
 PULSOUT LMotor, LRevFast
 PULSOUT RMotor, RFwdFast
 PAUSE 20
 NEXT

Page 32 · SumoBot – Mini Sumo Robotics

 GOTO Main

Spin_Right:
 FOR pulses = 1 TO 20
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 NEXT
 GOTO Main

About_Face:
 FOR pulses = 1 TO 10 ' back up from edge
 PULSOUT LMotor, LRevFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 NEXT
 FOR pulses = 1 TO 30 ' turn around
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 NEXT
 GOTO Main

 END

' -----[Subroutines]---

Read_Line_Sensors:
 HIGH LLinePwr ' activate sensors
 HIGH RLinePwr
 HIGH LLineIn ' discharge caps
 HIGH RLineIn
 PAUSE 1
 RCTIME LLineIn, 1, lLine ' read left sensor
 RCTIME RLineIn, 1, rLine ' read right sensor
 LOW LLinePwr ' deactivate sensors
 LOW RLinePwr

 ' convert readings to bits
 LOOKDOWN lLine, >=[1000, 0], lbLeft ' 0 = black, 1 = line
 LOOKDOWN rLine, >=[1000, 0], lbRight
 RETURN

HOW IT WORKS
This program incorporates a very handy technique created by Andy Lindsay that allows
the operator to use the SumoBot PCB's Reset button for Run/Don't Run control. This is

Chapter 3: SumoBot Sensors and Border Detection · Page 33

useful for controlling the SumoBot in a competition without fumbling for the actual
power switch.

The code at Reset reads a byte from the BASIC Stamp's EEPROM; located at the address
called RunStatus. When the program is first downloaded to the BASIC Stamp, the value
stored in RunStatus will be $00 (don't run). The READ instruction is used to bring this
value into the variable temp, then temp is inverted (to $FF), and finally, WRITE is used to
put it back to the EEPROM for the next reset cycle. Next, the value of temp is tested for
greater than zero. If this condition is true, the program is halted with END (which puts the
BASIC Stamp goes into low-power mode), otherwise it continues to the Start_Delay
code.

The routine called Start_Delay satisfies a requirement of Mini-Sumo competition rules.
The rules state that the robot must not start until five seconds after the command is given
by the judge. This code is very simple: it lights the LED to show that the SumoBot is
preparing to start and inserts a five second PAUSE. At the end of the delay, the LED will
be extinguished and the SumoBot will start moving.

The heart of the program begins at Main. The first step is to read the sensors with the
Read_Line_ Sensors subroutine. With the QTI sensor data, the SumoBot is moved using
the same logic developed earlier:

L R Action
0 0 Move forward
0 1 Spin to left
1 0 Spin to right
1 1 Back up and turn around

BRANCH takes care of routing the program to the right code section based on the QTI
inputs. As with SELECT-CASE, we're using BRANCH to replace several IF-THEN
comparisons. It should be clear that this is a cleaner approach than IF-THEN.

The only thing that might not be clear is that there is no delay (20 ms) in the Go_Fwd
routine. It isn't needed when the SumoBot is in the middle of the ring (not touching the
border line) because reading the QTI sensors consumes enough time that the delay is not
necessary.

Page 34 · SumoBot – Mini Sumo Robotics

CHALLENGE YOURSELF
1. Experiment with the Spin_Left and Spin_Right routines so that the SumoBot

generally moves toward the center after touching the border.

Chapter 4: Infrared Object Detection · Page 35

Chapter 4: Infrared Object Detection

Today's hottest products seem to have one thing in common: wireless communication.
Personal organizers beam data into desktop computers, and wireless remotes let us
channel surf. With a few inexpensive and widely available parts, the BASIC Stamp can
also use an infrared LED and detector to detect objects to the front and side of your
SumoBot.

Detecting obstacles doesn’t require anything as
sophisticated as machine vision. A much simpler
system will suffice. Some robots use RADAR or
SONAR (sometimes called SODAR when used in air
instead of water). An even simpler system is to use
infrared light to illuminate the robot’s path and
determine when the light reflects off an object. Thanks
to the proliferation of infrared (IR) remote controls, IR
illuminators and detectors are easily available and
inexpensive.

INFRARED HEADLIGHTS
The infrared object detection system we’ll build on the
SumoBot is like a car’s headlights in several respects.
When the light from a car’s headlights reflects off
obstacles, your eyes detect the obstacles and your
brain processes them and makes your body guide the
car accordingly. The SumoBot uses infrared LEDs for
headlights. They emit infrared, and in some cases, the
infrared reflects off objects, and bounces back in the
direction of the SumoBot. The eyes of the SumoBot
are the infrared detectors. The infrared detectors send
signals to the BASIC Stamp indicating whether or not
they detect infrared reflected off an object. The brain
of the SumoBot, the BASIC Stamp, makes decisions
and operates the servo motors based on this input.

What is Infrared?

Infra means below, so Infrared is
light (or electromagnetic radiation)
that has lower frequency, or longer
wavelength than red light. Our IR
LED and detector work at 980 nm
(Nanometers) which is considered
near infrared. Night-vision
goggles and IR temperature
sensing use far infrared
wavelengths of 2000-10,000 nm,
depending on the application.

 Approximate
Color Wavelength
Violet 400 nm
Blue 470
Green 565
Yellow 590
Orange 630
Red 780
Near infrared 800-1000
Infrared 1000-2000
Far infrared 2000-10,000 nm

Page 36 · SumoBot – Mini Sumo Robotics

The IR detectors have built-in optical filters that allow very little light except the 980 nm
infrared that we want to detect onto its internal photodiode sensor. The infrared detector
also has an electronic filter that only allows signals around 38.5 kHz to pass through. In
other words, the detector is only looking for infrared flashed on and off at 38,500 times
per second. This prevents interference from common IR interference sources such as
sunlight and indoor lighting. Sunlight is DC interference (0 Hz), and house lighting tends
to flash on and off at either 100 or 120 Hz, depending on the main power source in the
country where you reside. Since 120 Hz is way outside the electronic filter’s 38.5 kHz
band pass frequency, it is, for all practical purposes, completely ignored by the IR
detectors.

THE FREQOUT TRICK
Since the IR detectors only see IR signals in the neighborhood of 38.5 kHz, the IR LEDs
have to be flashed on and off at that frequency. A common 555 timer can be used for this
purpose, but the 555 timer circuit is more complex and less functional than the circuit we
will use in this and the next chapter. For example, the method of IR detection introduced
here can be used for distance detection; whereas, the 555 timer would need additional
hardware to do distance detection.

A pair of BASIC Stamp enthusiasts found an interesting trick that made the 555 timer
scheme unnecessary. This scheme uses the FREQOUT command without the RC filter
that’s normally used to smooth the signal into a sine-wave. Even though the highest
frequency FREQOUT is designed to transmit is 32,768 Hz, the unfiltered FREQOUT output
contains a harmonic with useful properties for a 38.5 kHz IR detector. More useful still
is the fact that you can use a command such as

 FREQOUT Pin, Duration, 38500

to send a 38.5 kHz harmonic that the IR detector can detect.

Tuned electronic receivers, such as the IR detectors we’ll be using, can detect
components of this signal that are called harmonics. These harmonics are actually
components of the unfiltered FREQOUT pulses. The third harmonic of 38.5 kHz can be
controlled directly by entering commands such as FREQOUT Pin, Duration, or
FREQOUT Pin, Duration, 40000 for 40 kHz (as might be required by different
detectors), etc.

Chapter 4: Infrared Object Detection · Page 37

INSTALLING AND TESTING THE IR EMITTERS/DETECTORS
The SumoBot is specially designed to accommodate two IR emitter/detector pairs.
Before we install them, we need to assemble the IR LEDs into their shells, then bend and
trim the leads so that they don't become damaged or misaligned during competition.

Figure 4.1 shows the assembly IR LED (clear) into the protective shell (standoff and
shield). The purpose of this assembly is to prevent stray IR from falling directly onto the
detector and causing a false positive reading.

Figure 4.1: IR LED, Standoff, and Shield Assembly

After assembly, bend the leads downward at a 90-degree angle so that when looking at
the back side of the shield, the positive (longer) lead is on the right. Trim the leads as
shown above.

Modify the detectors by trimming the leads to about 3/8" inches. This will cause the
detectors to sit lower and more firmly in the sockets, reducing the chance of
misalignment during competition.

Page 38 · SumoBot – Mini Sumo Robotics

 Figure 4.2: IR Detector3 Trimming

Figure 4.3 is the schematic for the SumoBot robot’s IR object sensing. Build this circuit
on your SumoBot. Note that the 220 Ω resistors are already built into the SumoBot PCB;
just plug in the IR emitters and your SumoBot will be ready. When aligning the IR
emitter "headlights" it's a good idea to angle them slightly outward to give the SumoBot a
wider field of vision.

Figure 4.3: SumoBot IR Object Detection Circuitry

3 Spare IR LEDs and detectors can be ordered Parallax at www.parallax.com

Chapter 4: Infrared Object Detection · Page 39

Figure 4.4: SumoBot IR Object Detection Components Installed

TESTING THE IR PAIRS
The key to making each IR pair work is to send one millisecond of unfiltered 38.5 kHz
FREQOUT harmonic followed immediately by testing the signal sent by the IR detector
and saving its output value. The IR detector’s normal output state when it sees no IR
signal is high (logic 1). When the IR detector sees the 38.5 kHz harmonic sent by the IR
LED, its output will drop from high to low (logic 0). Of course, if the IR does not reflect
off an object, the IR detector’s output simply stays high. Program 4.1 shows an example
of this method of reading the detectors

' SumoBot_4.1_IR_Sensor_Test.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LfIrOut PIN 4 ' left IR LED output
LfIrIn PIN 11 ' left IR sensor input
RtIrOut PIN 15 ' right IR LED output
RtIrIn PIN 14 ' right IR sensor input

Page 40 · SumoBot – Mini Sumo Robotics

' -----[Variables]---

irBits VAR Nib ' storage for IR target data
irLeft VAR irBits.BIT1
irRight VAR irBits.BIT0

' -----[Program Code]--

Main:
 DO
 FREQOUT LfIrOut, 1, 38500 ' modulate left IR LED
 irLeft = ~LfIrIn ' read input (1 = target)

 FREQOUT RtIrOut, 1, 38500 ' modulate right IR LED
 irRight = ~RtIrIn ' read input (1 = target)

 DEBUG HOME,
 "L R", CR,
 "----", CR,
 BIN1 irLeft, " ", BIN1 irRight

 PAUSE 20
 LOOP

 END

Two bit-sized variables are declared to store the value of each IR detector output. The
command FREQOUT LfIrOut, 1, 38500 sends the [unfiltered] modulation signal
to the left IR LED, causing it to flash on and off rapidly. The harmonic contained in this
signal either bounces off an object, or not. If it bounces off an object and is seen by the
IR detector, the IR detector sends a low signal to I/O pin LfIrIn. Otherwise, the IR
detector sends a high signal to LfIrIn. The bitwise invert operator (~) is used so that a
"hit" (reflection from the opponent) is indicated by "1" and a "miss" is indicated by a "0."
So long as the next command after the FREQOUT command is the one testing the state of
the IR detector’s output, it can be saved as a variable value in RAM. This is possible as
the IR detector output is held active a short time after the signal goes away. The
statement irLeft = ~LfIrIn checks LfIrIn, and saves the value (“1” for hit or “0”
for miss) in the irLeft bit variable. This process is repeated for the other IR pair, and the
IR detector’s output is saved in the irRight variable. The DEBUG statement then displays
the values in the Debug Terminal.

Chapter 4: Infrared Object Detection · Page 41

SUMOBOT MOTION CONTROL
The next task is to link the SumoBot robot’s ability to "see" with the motors so that an
object – the opponent – can be tracked. Load and run program 4.2 to see a
demonstration of linking IR object control to the SumoBot motors.

' SumoBot_4.2_IR_Scan.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LMotor PIN 13 ' left servo motor
RMotor PIN 12 ' right servo motor

LfIrOut PIN 4 ' left IR LED output
LfIrIn PIN 11 ' left IR sensor input
RtIrOut PIN 15 ' right IR LED output
RtIrIn PIN 14 ' right IR sensor input

' -----[Constants]---

LFwdFast CON 1000 ' left motor fwd; fast
LFwdSlow CON 800 ' left motor fwd; slow
LStop CON 750 ' left motor stop
LRevSlow CON 700 ' left motor rev; slow
LRevFast CON 500 ' left motor rev; fast

RFwdFast CON 500 ' right motor fwd; fast
RFwdSlow CON 700 ' right motor fwd; slow
RStop CON 750 ' right motor stop
RRevSlow CON 800 ' right motor rev; slow
RRevFast CON 1000 ' right motor rev; fast

' -----[Variables]---

irBits VAR Nib ' storage for IR target data
irLeft VAR irBits.BIT1
irRight VAR irBits.BIT0
lastIr VAR Nib ' info from last reading

pulses VAR Byte ' counter for motor control

' -----[Initialization]--

Reset:
 LOW LMotor ' initialize motor outputs
 LOW RMotor

' -----[Program Code]--

Page 42 · SumoBot – Mini Sumo Robotics

Main:
 GOSUB Read_IR_Sensors
 BRANCH irBits, [Scan, Follow_Right, Follow_Left, Hold]

Scan:
 BRANCH lastIR, [Move_Fwd, Scan_Right, Scan_Left, Move_Fwd]

Move_Fwd:
 DEBUG HOME, "Forward", CLREOL
 GOTO Main

Scan_Right: ' spin right, slow
 DEBUG HOME, "Scan Right", CLREOL
 PULSOUT LMotor, LFwdSlow
 PULSOUT RMotor, RRevSlow
 PAUSE 20
 GOTO Main

Scan_Left: ' spin left, slow
 DEBUG HOME, "Scan Left", CLREOL
 PULSOUT LMotor, LRevSlow
 PULSOUT RMotor, RFwdSlow
 PAUSE 20
 GOTO Main

Follow_Right: ' spin right, fast
 DEBUG HOME, "Follow Right", CLREOL
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 lastIr = irBits ' save last direction found
 GOTO Main

Follow_Left: ' spin left, fast
 DEBUG HOME, "Follow Left", CLREOL
 PULSOUT LMotor, LRevFast
 PULSOUT RMotor, RFwdFast
 PAUSE 20
 lastIr = irBits
 GOTO Main

Hold: ' on target
 DEBUG HOME, "On Target", CLREOL
 FOR pulses = 1 TO 3
 PULSOUT LMotor, LStop
 PULSOUT RMotor, RStop
 PAUSE 20
 NEXT
 lastIr = %00
 GOTO Main

Chapter 4: Infrared Object Detection · Page 43

 END

' -----[Subroutines]---

Read_IR_Sensors:
 FREQOUT LfIrOut, 1, 38500 ' modulate left IR LED
 irLeft = ~LfIrIn ' read input (1 = target)
 FREQOUT RtIrOut, 1, 38500 ' modulate right IR LED
 irRight = ~RtIrIn ' read input (1 = target)
 RETURN

HOW IT WORKS
This program is functionally similar to the line detection program. The IR sensors are
scanned and, due to variable aliasing, the state of both sensors is held in the Nibble
variable irBits. If no target is detected the SumoBot will go into scanning mode. The
code at Scan will look for the opponent in the last known direction (held in the variable
lastIr). When a target is detected, the SumoBot will move quickly in the target direction.
The direction is stored in the event the target is lost so that the SumoBot will scan in the
last know target direction.

If you run the program with the power switch in position 1, the Debug Terminal will
display the program's logic based on a target placed in front of the SumoBot. If you run
the program with the power switch in position 2, the SumoBot will rotate in the direction
of the target or scan in the suspect direction.

Chapter 5: Basic Competition Code · Page 45

Chapter 5: Basic Competition Code

Okay, it's time to get ready for competition. The program in this chapter brings all the
SumoBot robot's systems together, and adds some intelligent control.

Start by adding a piezo speaker as shown in Figures 5.1 and 5.2, then load and run
program 5.1.

Figure 5.1: Start LED and Piezo Speaker Schematic

Figure 5.2: Start LED and Piezo Speaker Connections

Page 46 · SumoBot – Mini Sumo Robotics

' SumoBot_5.1_Basic_Competition_Program.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

LMotor PIN 13 ' left servo motor
RMotor PIN 12 ' right servo motor

LLinePwr PIN 10 ' left line sensor power
LLineIn PIN 9 ' left line sensor input
RLinePwr PIN 7 ' right line sensor power
RLineIn PIN 8 ' right line sensor input

LfIrOut PIN 4 ' left IR LED output
LfIrIn PIN 11 ' left IR sensor input
RtIrOut PIN 15 ' right IR LED output
RtIrIn PIN 14 ' right IR sensor input

Speaker PIN 1 ' piezo speaker
StartLED PIN 0 ' display start delay

' -----[Constants]---

LFwdFast CON 1000 ' left motor fwd; fast
LFwdSlow CON 800 ' left motor fwd; slow
LStop CON 750 ' left motor stop
LRevSlow CON 700 ' left motor rev; slow
LRevFast CON 500 ' left motor rev; fast

RFwdFast CON 500 ' right motor fwd; fast
RFwdSlow CON 700 ' right motor fwd; slow
RStop CON 750 ' right motor stop
RRevSlow CON 800 ' right motor rev; slow
RRevFast CON 1000 ' right motor rev; fast

' -----[Variables]---

lLine VAR Word ' left sensor raw reading
rLine VAR Word ' right sensor raw reading
blackThresh VAR Word ' QTI black threshold
lineBits VAR Nib ' decoded sensors value
lbLeft VAR lineBits.BIT1
lbRight VAR lineBits.BIT0

irBits VAR Nib ' IR readings (l & r)
irLeft VAR irBits.BIT1
irRight VAR irBits.BIT0
lastIr VAR Nib ' info from last reading

pulses VAR Byte ' counter for motor control

Chapter 5: Basic Competition Code · Page 47

temp VAR Byte

' -----[EEPROM Data]---

RunStatus DATA $00 ' run status

' -----[Initialization]--

Reset:
 READ RunStatus, temp ' read current status
 temp = ~temp ' invert status
 WRITE RunStatus, temp ' save for next reset
 IF (temp > 0) THEN END ' okay to run?

' Sets black threshold to 1/4 the average of the two sensor readings.
' SumoBot must be placed over black playing surface before this code runs.

Set_Threshold: ' set QTI black threshold
 GOSUB Read_Line_Sensors
 blackThresh = (lLine / 10) + (rLine / 10)

 LOW LMotor ' make more pins outputs
 LOW RMotor

Start_Delay: ' five second delay
 FOR temp = 1 TO 5
 HIGH StartLED ' show active
 PAUSE 900
 INPUT StartLED ' blink each second
 FREQOUT Speaker, 100, 2500, 3000 ' beep each second
 NEXT

 GOTO Lunge ' start aggressive!

' -----[Program Code]--

Main:
 GOSUB Read_Line_Sensors

 ' If not on the Shikiri line (border), continue to look for opponent,
 ' otherwise, spin back toward center and resume search

 BRANCH lineBits, [Search_For_Opponent, Spin_Left, Spin_Right, About_Face]

' --[Border Avoidance]--

Spin_Left: ' right sensor was active
 FOR pulses = 1 TO 20
 PULSOUT LMotor, LRevFast
 PULSOUT RMotor, RFwdFast
 PAUSE 20

Page 48 · SumoBot – Mini Sumo Robotics

 NEXT
 lastIr = %00 ' clear scan direction
 GOTO Lunge

Spin_Right: ' left sensor was active
 FOR pulses = 1 TO 20
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 NEXT
 lastIr = %00
 GOTO Lunge

About_Face: ' both sensors on Shikiri
 FOR pulses = 1 TO 10 ' back up from edge
 PULSOUT LMotor, LRevFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 NEXT
 FOR pulses = 1 TO 30 ' turn around
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RRevFast
 PAUSE 20
 NEXT
 lastIr = %00
 GOTO Lunge

' --[IR Processing]--

Search_For_Opponent:
 GOSUB Read_IR_Sensors

 ' If opponent is not in view, scan last known direction. Turn toward
 ' opponent if seen by one "eye" -- if both, lunge forward

 BRANCH irBits, [Scan, Follow_Right, Follow_Left, Lunge]

Scan:
 BRANCH lastIR, [Move_Fwd, Scan_Right, Scan_Left]

Move_Fwd:
 GOSUB Creep_Forward
 GOTO Main

Scan_Right: ' spin right, slow
 FOR pulses = 1 TO 5
 PULSOUT LMotor, LFwdSlow
 PULSOUT RMotor, RRevSlow
 PAUSE 20
 NEXT
 GOSUB Creep_Forward ' keep moving

Chapter 5: Basic Competition Code · Page 49

 GOTO Main

Scan_Left: ' spin left, slow
 FOR pulses = 1 TO 5
 PULSOUT LMotor, LRevSlow
 PULSOUT RMotor, RFwdSlow
 PAUSE 20
 NEXT
 GOSUB Creep_Forward
 GOTO Main

Follow_Right: ' spin right, fast
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RRevSlow
 lastIR = irBits ' save last direction found
 GOTO Main

Follow_Left: ' spin left, fast
 PULSOUT LMotor, LRevSlow
 PULSOUT RMotor, RFwdFast
 lastIR = irBits
 GOTO Main

Lunge: ' locked on -- go get him!
 FOR pulses = 1 TO 25
 PULSOUT LMotor, LFwdFast
 PULSOUT RMotor, RFwdFast
 GOSUB Read_Line_Sensors
 IF (lineBits = %11) THEN Match_Over ' in sight, we're on the line
 NEXT
 GOTO Main

' If SumoBot can see the opponent with both "eyes" and both QTIs are
' detecting the border, we must have pushed the opponent out.

Match_Over:
 FOR pulses = 1 TO 10 ' stop motors
 PULSOUT LMotor, LStop
 PULSOUT RMotor, RStop
 PAUSE 20
 NEXT
 INPUT LMotor
 INPUT RMotor

 FOR temp = 1 TO 10 ' make some noise
 HIGH StartLED
 FREQOUT Speaker, 100, 2500, 3000 ' beep
 INPUT StartLED ' blink LED
 PAUSE 100
 NEXT

Page 50 · SumoBot – Mini Sumo Robotics

 DIRS = $0000 ' disable all outputs
 GOTO Reset ' reset for next round

' -----[Subroutines]---

Read_Line_Sensors:
 HIGH LLinePwr ' activate sensors
 HIGH RLinePwr
 HIGH LLineIn ' discharge caps
 HIGH RLineIn
 PAUSE 1
 RCTIME LLineIn, 1, lLine ' read left sensor
 RCTIME RLineIn, 1, rLine ' read right sensor
 LOW LLinePwr ' deactivate sensors
 LOW RLinePwr

 ' convert readings to bits
 LOOKDOWN lLine, >=[1000, 0], lbLeft ' 0 = black, 1 = line
 LOOKDOWN rLine, >=[1000, 0], lbRight
 RETURN

Read_IR_Sensors:
 FREQOUT LfIrOut, 1, 38500 ' modulate left IR LED
 irLeft = ~LfIrIn ' read input (1 = target)
 FREQOUT RtIrOut, 1, 38500 ' modulate right IR LED
 irRight = ~RtIrIn ' read input (1 = target)
 RETURN

Creep_Forward:
 FOR pulses = 1 TO 20
 PULSOUT LMotor, LFwdSlow
 PULSOUT RMotor, RFwdSlow
 PAUSE 20
 NEXT
 RETURN

HOW IT WORKS
After the Reset code for Run/Don't Run developed in the chapter 4, the SumoBot reads
the QTI sensors and calculates a suitable threshold level for the playing field that will be
used during the match. The net effect is to calculate the average sensor reading ((left +
right) / 2) and then divide this value by four. The blackThresh variable holds this level
and is recalculated for each match (this works because the SumoBot starts in near the
center of the ring, over the black surface). Using this strategy, the SumoBot can deal
with variable ambient lighting conditions that may change from match to match.

Chapter 5: Basic Competition Code · Page 51

The Start_Delay section serves the same purpose as described previously, it's just a bit
fancier in this version of the program. In this case we've added a piezo speaker. At the
start, the LED illuminates and then blinks to tick away each of the five seconds in the
mandated delay. The LED blink coincides with a beep from the piezo speaker.

Since many matches start with the Mini-Sumo robots facing each other, the subroutine
called Lunge is called to get the SumoBot moving quickly. This routine drives the
SumoBot forward as fast as possible. It will also be used later when the opponent is
located. If your club rules specify that the SumoBot will not face the opponent from the
start, you may wish to substitute a rotation command to get the SumoBot oriented toward
the opponent as quickly as possible.

The core of the program is at Main. The code starts by reading the QTI sensors (now
using the calibrated black level for the Sumo ring). If the QTI sensors indicate that the
SumoBot is safely on the playing surface, a BRANCH instruction will send the code
Search_For_Opponent. If the SumoBot is touching the Tawara line (border), the edge
avoidance logic previously developed will be used. When the border is touched, the
lastIr variable is cleared so the SumoBot will move toward the center after turning in
from the border.

The Search_For_Opponent routine employs a bit of logic to minimize random searching.
This code calls the Read_IR_Sensors routine and will BRANCH accordingly, based on the
logic developed in program 4.2. If the opponent is not currently in sight, the SumoBot
will scan in the direction last known. Early on, when the opponent has not been spotted,
the SumoBot will creep forward in order to cut down the range between itself and the
opponent.

If the Read_IR_Sensors subroutine returns a hit, the SumoBot will move quickly in the
direction of the opponent. The hit direction is recorded in case the opponent escapes and
the SumoBot is forced back into scan mode. When the opponent is locked on (irBits =
%11), the SumoBot will go into "Lunge" mode to get to the opponent quickly and move it
out of the ring.

The best outcome is when the SumoBot can "see" the opponent with both "eyes" and both
QTI sensors detect the Tawara border. Under these conditions the assumption is that the
opponent has been successfully pushed from the ring and a Yuko point is to be awarded.
Many matches will be won when the SumoBot removes the competitor from the ring and
an angle; the competitor will be out but the SumoBot will continue to push, or may go

Page 52 · SumoBot – Mini Sumo Robotics

into edge-avoidance and search mode. In this case the Judge will award the Yuko point
and the SumoBot can be stopped by pressing the Reset button.

FINAL COMPETITION NOTES
The SumoBot – like any robot – will perform best with fresh batteries. The first sign of
weak batteries will be degradation in opponent detection range. Make sure that you take
plenty of fresh batteries to each contest you participate in.

When fully assembled and loaded with batteries, the SumoBot will weigh less than the
500 gram (17.6 oz) limit imposed by standard Mini-Sumo rules. This could be a
disadvantage against a heavier robot. There are many ways to add weight to the
SumoBot chassis; one of the easiest is with Prather Products stick-on weight. These
stick-on weights are particularly convenient to add weight to the back of the scoop. This
helps keep the scoop on the playing surface. Prather Products weights are available in
hobby shops.

Appendix A: SumoBot Parts List · Page 53

Appendix A: SumoBot Parts List

All parts used in the SumoBot kit are available individually from the Parallax Component
Shop4. If you can’t readily find the component you are looking for in the Component
Shop enter the name of it in the on-line search box using the stock code.

 Parallax Part # Description Qty/Kit
 Electronic Components
 550-27401 QTI line sensor 2
 350-00003 Infrared emitter (clear LED) 2
 350-90000 IR emitter standoff 2
 350-90001 IR emitter shield 2
 350-00014 Infrared detector 2
 350-00006 Red LED 1
 350-00001 Green LED 1
 150-04710 470 ohm resistor, 1/4 watt 2
 900-00001 Piezo speaker 1
 800-00016 Jumper wires (bag of 10) 1
 550-27400 SumoBot Printed Circuit Board with BASIC Stamp 2 1
 753-00001 Battery Pack with Tinned Wires 1
 805-00001 3-pin extension cable (for QTI) 2
 900-00008 Parallax Continuous Rotation Servo 2
 Mechanical Parts
 720-27403 SumoBot chassis 1
 720-27404 SumoBot scoop 1
 721-00001 Plastic wheel 2
 721-00002 Rubber tire (for plastic wheel) 4
 Hardware
 713-00001 5/8" round aluminum standoff 4
 713-00002 1-1/4" round aluminum standoff 2
 700-00028 1/4" 4/40 machine screw – panhead 2
 700-00016 3/8" 4/40 machine screw – flathead 2
 700-00002 3/8" 4/40 machine screw – panhead 14
 710-00002 1" 4/40 machine screw – panhead 2
 700-00003 4/40 nut 10

4 www.parallax.com Component Shop

Page 54 · SumoBot – Mini Sumo Robotics

 700-00015 Nylon washer 2
 Miscellaneous
 122-27400 SumoBot Manual 1
 800-00003 Serial (programming) cable 1
 27000 Parallax CD 1
 700-00064 Parallax Screwdriver 1

Appendix B: Standard Mini-Sumo Competition · Page 55

Appendix B: Standard Mini-Sumo Competition Rules

Reprinted with permission from Bill Harrison, Sine Robotics.

Section 1: Definition of a Match

Article 1 Definition

The match shall be contested by two teams (At the event, one team consists of
one robot with two team members, one of which is a leader. Other team
members must watch from the audience), according to these Rules for Sumo
matches (hereafter called "these Rules"), with each team's robot made by each
team (either a remote-controlled model or a standalone model) competing to get
the effective points (hereafter called "Yuko"), within the perimeter of the
defined Sumo Ring. The judges will decide which team wins. A single person
can also compete with a Robot Sumo, with the same rules that apply to teams.

Section 2: Requirements for the Ring Area

Article 2 Definition of Ring Area

The Ring Area means the Sumo Ring and the space outside the Ring. Anywhere
outside this Ring Area is called Outer Area.

Article 3 Sumo Ring

1. The Ring shall be in circular shape with its height being 2.5 cm and its

diameter 77 cm (including the outside of the line that divides the inside of the
Ring from its outside). The Ring shall be of black hard rubber (made by
Toyo Linoleum; long vinyl sheet NC#R289, or its equivalent) adhered on top
of Ring.

2. Shikiri lines (where robots stand at the beginning of the match) are the two
parallel lines with 10 cm distance between the lines, drawn in the center of
the Ring. The Shikiri lines are painted in brown (or equivalent for reflection

Page 56 · SumoBot – Mini Sumo Robotics

of IR light), 1 cm wide and 10cm long.

3. The Ring shall be marked by a white circular line of 2.5 cm thickness. The

Ring is within the outside of this circular line.

Article 4 Space

There should be the space of more than 50 cm wide outside the outer side of the
Ring. This space can be of any color except white, and can be of any materials
or shape, as long as the basic concepts of these rules are observed. This area,
with the ring in the middle, is to be called the: "Ring Area". If there are
markings or part of the ring platform outside these dimensions, this area will
also be considered in the Ring Area.

Section 3: Requirements for Robots

Article 5 Specifications

1. A robot must be in such a size that it can be put in a square tube of 10 cm

wide and 10 cm deep. A robot can be of any height. A robot must not be in
such a design that its body will be physically separated into pieces when a
match starts. The robot with such a design shall lose the match. The design
to stretch a robot's body or its parts shall be allowed, but must remain a single
centralized robot. Screws or nuts or other robot parts, with a mass of less
than 5 grams total, falling off from a robot's body shall not cause the loss of
the match.

2. The mass of a robot must be less than 500 grams including the attachments
and parts, but excluding the weight of a proportional system (the transmitter
or control box held by the operator, hereafter called "Prop") for remote-
controlled models.

3. The radio frequencies for radio-controlled robots must be either 27 MHZ (1-6
bands) or 40 MHZ (61, 63, 65, 67, and 69 bands). 40 MHZ (71-83 bands)
cannot be used.

4. Only one Prop can be used for one robot. Radio control Prop must be one of

Appendix B: Standard Mini-Sumo Competition · Page 57

Futaba's, JR's, Sanwa's, or Kondo Kagaku's.

5. For stand-alone robots, any control mechanisms can be employed.

6. Stand-alone models must be so designed that a robot starts operating a

minimum of five seconds after a start switch is pressed (or any method that
invokes the operation of a robot).

7. Microcomputers in a robot can be of any manufacturers and any memory
sizes can be chosen.

Article 6 Restrictions on Robot Design

1. Jamming devices, such as an IR LED intended to saturate the opponents IR

sensor, are not allowed. Do not disturb your opponent's radio-control by
putting into a robot's body such devices as a jamming device.

2. Do not use parts that could break or damage the Ring. Do not use parts that
are intended to damage the opponent's robot or its operator. Normal pushes
and bangs are not considered intent to damage.

3. Do not put into a robot's body devices that can store liquid, powder, or air, in
which are thrown at the opponent.

4. Do not use any inflaming devices.

5. Do not use devices that throw things at your opponent.

6. Do not stick a robot down onto the Ring, using sucking devices or glue, or
use any type of sticky tires (such as double sticky foam tape) or any device
to assist in adding more down force (such as a vacuum device).

Section 4: Match Principles

Article 7 Match Principles

1. One match shall consist of 3 rounds, within a total time of 3 minutes, unless

Page 58 · SumoBot – Mini Sumo Robotics

extended by the Judges.

2. The team who wins two rounds or receives two "Yuko" points first, within
the time limit, shall win the match. A team receives a Yuko point when they
win a round. If the time limit is reached before one team can get two Yuko
points, and one of the teams has received one Yuko point, the team with one
Yuko point shall win.

3. When the match is not won by either team within the time limit, the extended
match shall be fought during which the team who receives the first Yuko
point shall win. However, the winner/loser of the match may be decided by
judges or by means of lots, or there can be a rematch.

4. One Yuko point shall be given to the winner when the judges' decision was
called for or lots were employed.

Section 5: Match Procedure

Article 8 Start

With the chief judge's instructions, the two teams bow in the Outer Ring (For
example, stand facing each other, outside the ring platform or "ring area", with
ring between), go up to the Ring, and place a robot on or behind the Shikiri line
or the imaginary extended Shikiri line. (A robot or a part of a robot may not be
placed beyond the front edge of the Shikiri line toward the opponent.). A match
starts with the following rules:

1. For remote-controlled robots, start operating a Prop when the chief judge

announces the start of a round.

2. For stand-alone robots, be ready to press a start switch. Press the switch
when the chief judge announces the start of the round. After 5 seconds, the
robot is allowed to start operating, before which players must clear out of the
Ring Area.

Article 9 Stop & Resume

The match stops and resumes when a judge announces so.

Appendix B: Standard Mini-Sumo Competition · Page 59

Article 10 End of Match

The match ends when the judge calls the winner. Both contestants bow after
removing their robots.

Section 6: Time of Match

Article 11 Time of Match

One Match will be contested for a total of 3 minutes, starting and ending by the
chief judge's announcements. For stand-alone robots, the clock shall start
ticking 5 seconds after the start is announced.

Article 12 An extended match shall be for 3 minutes, if called by the Judge.

Article 13 The following are not included in the time of the Match:

1. The time elapsed after the chief judge announces Yuko and before the match

resumes. 30 seconds shall be the standard before the match resumes.

2. The time elapsed after a judge announces to stop the match and before the
match resumes.

Section 7: Yuko

Article 14 Yuko

One Yuko point shall be given when:

1. You have legally forced the body of your opponent's robot to touch the

space outside the Ring, which includes the side of the ring itself.

2. A Yuko point is also given in the following cases:

Page 60 · SumoBot – Mini Sumo Robotics

2.1. Your opponent's robot has touched the space outside the Ring, on its
own.

2.2. Either of the above takes place at the same time that the End of the
Match is announced.

3. When a robot has fallen on the Ring or in similar conditions, Yuko will not
be counted and the match continues.

4. When judges' decision is called for to decide the winner, the following
points will be taken into considerations:
4.1. Technical merits in movement and operation of a robot
4.2. Penalty points during the match
4.3. Attitude of the players during the match

5. The match shall be stopped and a rematch shall start when:

5.1. Both robots are in clinch and stop movements for 5 seconds, or move
in the same orbit for 5 seconds, with no progress being made. If it is
not clear if progress is being made or not, the Judge can extend the
time limit for a clinch or orbiting robots up to 30 seconds.

5.2. Both robots move, without making progress, or stop (at the exact same
time) and stay stopped for five seconds without touching each other.
However, if one robot stops its movement first, after 5 seconds, he
shall be considered not having the will to fight, and the opponent shall
receive a Yuko, even if the opponent also stops. If both robots are
moving and it isn't clear if progress is being made or not, the Judge can
extend the time limit up to 30 seconds.

5.3. If both robots touch the outside of the ring at about the same time, and
it can not be determined which touched first, a rematch is called.

Section 8: Violations

Article 15 Violations

If the players perform the deeds as described in Articles 6, 16 and 17, the players
shall be declared as violating the rules.

Appendix B: Standard Mini-Sumo Competition · Page 61

Article 16 The player utters insulting words to the opponent or to the judges or puts voice
devices in a robot to utter insulting words or writes insulting words on the body
of a robot, or any insulting action.

Article 17 A Player

1. Enters into the Ring during the match, except when the player does so to

bring the robot out of the Ring upon the chief judge's announcement of
Yuko or stopping the match. To enter into the Ring means:
1.1. A part of the player's body is in the Ring, or
1.2. A player puts any mechanical kits into the Ring to support his/her

body.
2. Performs the following deeds:

2.1. Demand to stop the match without appropriate reasons.
2.2. Take more than 30 seconds before resuming the match, unless the

Judge announces a time extension..
2.3. Start operating the robot before the chief judge announces the start of

the match (for remote-controlled robots).
2.4. Start operating the robot within 5 seconds after the chief judge

announces the start of the match (for stand-alone robots).
2.5. Do or say that which should disgrace the fairness of the match.

Section 9: Penalties

Article 18 Penalties

Those who violate the rules with the deeds described in Articles 6 and 16 shall
lose the match. The judge shall give two Yuko points to the opponent and order
the violator to clear out. The violator is not honored with any rights.

Article 19 Each occasion of the violations described in Article 17 shall be accumulated.

Two of these violations shall give one Yuko to the opponent.

Article 20 The violations described in Article 17 shall be accumulated throughout one

match.

Page 62 · SumoBot – Mini Sumo Robotics

Section 10: Injuries and Accidents during the Match

Article 21 Request to Stop the Match

A player can request to stop the game when he/she is injured or his/her robot
had an accident and the game cannot continue.

Article 22 Unable to Continue the Match

When the game cannot continue due to player's injury or robot's accident, the
player who is the cause of such injury or accident loses the match. When it is
not clear which team is such a cause, the player who cannot continue the game,
or who requests to stop the game, shall be declared as the loser.

Article 23 Time Required to Handle Injury/Accident

Whether the game should continue in case of injury or accident shall be decided
by the judges and the Committee members. The decision process shall take no
longer than five minutes.

Article 24 Yuko Given to the Player Who Cannot Continue

The winner decided based on Article 22 shall gain two Yuko points. The loser
who already gained one Yuko point is recorded as such. When the situation
under Article 22 takes place during an extended match, the winner shall gain one
Yuko point.

Section 11: Declaring Objections

Article 25 Declaring Objections

No objections shall be declared against the judges' decisions.

Article 26 The lead person of a team can present objections to the Committee, before the

match is over, if there are any doubts in exercising these rules. If there is no
Committee member present, the objection can be presented to the Judge, before
the match is over.

Appendix B: Standard Mini-Sumo Competition · Page 63

Section 12: Requirements for Identifications for Robots

Article 27 Identifications for Robots

Some type of name or number, to identify the robot (as registered in the contest)
must be easily readable on the robot's body, while the robot is in competition.

Section 13: Miscellaneous

Article 28 Flexibility of Rules

As long as the concept and fundamentals of the rules are observed, the rules
shall be so flexible that they will be able to encompass the changes in the
number of players and of the contents of matches.

Article 29 Change in Rules

Any changes to or obsolescence of these rules shall be decided by the General
Committee Meeting based on the Sumo Match Committee Rules.

Appendix C: Mini-Sumo Ring · Page 65

Appendix C: Mini-Sumo Ring

If you're handy with tools, you can build your own Mini-Sumo ring. Many home
improvement centers carry precut circles (wood, MDF, Melamine) that are very close to
the official dimension and can be used to create a suitable practice ring.

Mini-Sumo Ring Specifications:

• Diameter 77 cm / 30.3 in.
• Height 2.5 cm / 1 in.
• Surface Hard Rubber
• Colors

o Ring Black
o Shikiri (start line) Brown5 (10 cm x 1 cm / 3.9 in. x 0.39 in.)
o Tawara (border) White (2.5 cm / 1 in.)

5 Some clubs specify that the Shikiri (start) lines shall have a reflective value of no greater than 20% of

the Tawara (border).

Appendix D: SumoBot PCB Schematic · Page 67

Appendix D: SumoBot PCB Schematic

