Pololu Blog (Page 5)

Welcome to the Pololu Blog, where we provide updates about what we and our customers are doing and thinking about. This blog used to be Pololu president Jan Malášek’s Engage Your Brain blog; you can view just those posts here.

The "Internet of Things" at AT&T DevSummit Hackathon

Posted by Nick on 10 January 2014


Our presentation at the AT&T DevSummit Hackathon. From @IoTHackathon.

This weekend, a few of my coworkers and I participated at the AT&T Developer Summit Hackathon at the Palms Casino here in Las Vegas. We were exposed to some of the latest technology in the “Internet of Things”, which refers to the process of collecting data that is transmitted wirelessly from a plethora of tangible items. The event was by far the best hackathon I have attended. As developers, we were given the opportunity to work with some of the latest relevant products:

FRDM-KL46Z Kinetis development board by Freescale and SocketModem HSPA+ Arduino Shield by MultiTech, two boards that were available at the event.

We partnered up with four developers from around the country to create an app that tracks someone having an emergency and directs first responders to their location. We envision this could be useful at large venues such as Rain Nightclub, where the hackathon was held.

To locate a patron within the nightclub, we used a fixed array of Qualcomm Gimbals, which are Bluetooth Smart devices that send signal strength metrics to nearby Bluetooth receivers. We created an iOS app that received data from the Gimbals and transmitted that data to the AT&T M2X API, a cloud-based datastore.

Next, we used that data to point the first responder in the direction of the patron. Our “first responder” wore an unreleased Plantronics Bluetooth headset, most similar to their Voyager Legend line, with a built in gyroscope. We calibrated the gyro at the entrance to the room and then (using trigonometry) we told the first responder to “turn left”, “turn right”, or “go straight”.

Plantronics Voyager Headset and Qualcomm Gimbal.

To our delight, we won a prize for the “Best Use of a Plantronics Product” category: thanks, Plantronics! Overall this was a great experience. We plan to continue to develop applications for our Plantronics headset and the "Internet of Things” in general. We look forward to applying what we learned to develop new products here at Pololu.

Free Elektor magazine January/February 2014

Posted by Kevin on 7 January 2014
Tags: new products
Free Elektor magazine January/February 2014

Get a FREE copy of Elektor magazine’s January/February issue with your order while supplies last. To get your free issue, enter the coupon code ELEKTOR0114 into your shopping cart. The magazine will add 8 ounces to the package weight when calculating your shipping options.

For other issues and more information, see our Free Elektor Magazine Offers page. All issues are now available for shipping worldwide!

Raspberry Zumo Robot

Posted by David on 6 January 2014
Raspberry Zumo Robot

Frédéric Jelmoni built a neat robot with a Raspberry Pi and a Zumo Chassis Kit. The Raspberry Zumo robot can be controlled over WiFi using telnet. The server on the Raspberry Pi is written in Python and uses the RPIO library to send signals to an SN754410 motor driver that drives the two 100:1 Micro Metal Gearmotors HP in the Zumo chassis. The server also controls an RGB LED and a buzzer. A stripped-down Logitech webcam attached to the front of the robot provides video that is streamed over the web using mjpg-streamer.

For more details, see the Raspberry Zumo page, which is written in French. Also, see our post from last October about a similar robot, the Pibot-B.

New short-range analog Sharp distance sensor

Posted by Ben on 3 January 2014
Tags: new products
New short-range analog Sharp distance sensor

After having been out of the short-range Sharp GP2D120XJ00F analog distance sensor for a while, we are happy to have a higher-performance replacement: the Sharp GP2Y0A41SK0F analog distance sensor. The newer GP2Y0A41SK0F has the same physical dimensions, pinout, and 4 cm to 30 cm operating range as the original GP2D120XJ00F, but it offers a much higher update rate and lower average current draw. This sensor is an inexpensive and easy way to add close-proximity rangefinding or obstacle detection to your electronics or robotics project.

For longer-range analog rangefinders and shorter-range digital distance sensors, check out our full selection of optical rangefinders.

Powerful new S18v20x step-up/step-down regulators

Posted by Ben on 31 December 2013
Tags: new products
Powerful new S18v20x step-up/step-down regulators

Earlier this month we introduced our new line of powerful U3V50x boost regulators; now we have a similarly powerful family of S18V20x step-up/step-down voltage regulators to go along with them! We are especially excited about these regulators, which have a wide 3 V to 30 V input voltage range, typical efficiency of 80% to 90%, and maximum output current of approximately 2 A when the input voltage is near the output voltage.

Step-up/step-down regulators like the S18V20x work with input voltages that are less than, equal to, or greater than the output voltage. This makes them especially well suited for battery-powered applications where the nominal battery voltage is close to the desired output voltage, and the actual battery voltage transitions from above the output to below as the battery discharges. For example, these regulators make it possible to get a steady 12V from a 12V battery or a steady 6V from five NiMH cells, which can be over 7 V when fully charged and below 5 V when drained. These regulators are also great for applications where having a very wide operating voltage range is desirable, such as projects where you want a lot of flexibility in power supply choice or in systems powered by alternative energy sources like solar or wind, where the output voltage can vary greatly.

The S18V20x family includes versions with fixed 5 V, 6 V, 9 V, or 12 V outputs and versions with adjustable 4 V to 12 V or 9 V to 30 V outputs. All of them feature built-in reverse-voltage protection, over-current protection, thermal shutdown, and an under-voltage lockout that keeps the modules from behaving erratically when the input voltage gets too low.

The compact boards (0.825″ × 1.7″) have four mounting holes for #2 or M2 screws and can be assembled with the included 5mm-pitch terminal blocks or 0.1″ header pins.

For other regulator options, you can take a look at our full selection of step-up/step-down regulators, step-up voltage regulators, and step-down voltage regulators.

New products: Vishay 38 kHz IR detector modules

Posted by Jan on 30 December 2013
Tags: new products
New products: Vishay 38 kHz IR detector modules

Modulated IR detectors typically used for remote control of household electronics have long been used in robot sensors because they are small, cheap, and very sensitive while still blocking out unwanted interference. However, part of what makes the modules so good for remote control is their complex automatic gain control (AGC) circuitry that adjusts the sensors’ sensitivity to ambient lighting conditions to give clean, digital outputs in a variety of environments. Unfortunately for those using the modules for other purposes, all of that magic is internal to the modules and leads to two shortcomings: we cannot know how strong the optical signal is because we do not know the gain value, and we cannot have consistent behavior because we cannot control how the AGC behaves.

Pololu 38 kHz IR proximity sensor.

So, you can imagine how excited I was to find out about Vishay’s new IR modules designed specifically for sensor applications. They have two basic versions: one with a fixed gain that is constantly super-sensitive, and another one with a predictably-varying AGC that lets you know how bright the incident IR is. We used the fixed-gain units on the IR proximity sensors we released earlier this year, and we plan to make more products that use these unique sensors. In the meantime, we are happy to offer the through-hole versions of these sensors so you can start playing around with them to make your own sensor systems. Here are the two parts:

  • The Vishay TSSP58038 has a fixed high gain setting, so it responds predictably and can detect a continuous modulated signal.
  • The Vishay TSSP58P38 includes automatic gain control – but it is tuned to provide a usable measurement of the strength of the detected signal. When configured as a reflective proximity sensor, its output is a pulse with a width that depends almost linearly on the distance to the target.

Those IR proximity sensors I mentioned earlier work nicely with these new sensors since our boards include a high-brightness LED with a 38 kHz modulation circuit, so you can use several of those with these new IR detectors to make sophisticated sensing solutions in which you enable one emitter at a time and monitor the reflections with all the other sensors.

LED strip code used in Pololu Christmas video

Posted by Emily on 19 December 2013


We added the code we used for the LEDs in our Christmas video last week to our GitHub page. Ben cleaned it up a bit and added lots of comments, so we hope it’s helpful if you want to use it as a base to write some awesome sequences for your own LED strips.

In case you missed the video, here it is again:

New product: I²C Long Distance Differential Extender

Posted by Kevin on 19 December 2013
Tags: new products
New product: I²C Long Distance Differential Extender

We’re now selling an I²C long distance differential extender from SJTbits. When you connect one of these boards to each I²C device in your system, they transparently convert all I²C communications to differential signaling and back, allowing the range of your I²C bus to be significantly increased (they have been tested at ranges of over a hundred feet).

For more information, see the I²C Long Distance Differential Extender product page.

Mini Sumo Tournament (with Zumos!)

Posted by Jon on 17 December 2013
Mini Sumo Tournament (with Zumos!)

Erich, a professor at the Lucerne University of Applied Sciences and Arts in Switzerland, posted to our forum about their first Mini Sumo tournament, which took place this past weekend. The tournament was a part of Erich’s embedded systems programming class, for which he created a custom Mini Sumo robot platform for his students to modify. His robots use a custom PCB that mounts to the Zumo chassis kit and connects to the reflectance sensor array. Instead of an Arduino, his PCB uses a Freescale FRDM-KL25Z as the microcontroller board. Students customized the modified Zumos with their own sensors (we saw at least a few of them using our IR proximity sensors). 21 robots were entered into the competition, and a winner was determined over 5 rounds. Links to a competitor showcase video, several battle videos, and more information about the competition can be found in his forum post.

We are also excited to see a list of performance tweaks that Erich created for Zumo robots to be more competitive in Mini Sumo. We have made this available as a resource on the Zumo product pages.

While he was experimenting with our Zumo chassis, Erich posted to our forums a few times updating us on the progress of his modifications. You can follow his robot’s progression by visiting these forum posts:

March 2013: Zumo Robot with FRDM-KL25Z Board

September 2013: Zumo Robot with Pololu Plug-in Modules

October 2013: Zumo Robot with Pololu Plug-in Modules, assembled

Ping-pong ball collecting robot makes appearance at RubyConf

Posted by Paul on 13 December 2013

We saw this robotic ping-pong ball collector by Will Jessop on the Raspberry Pi blog a few days ago. The robot uses the Pololu 30T Track Set, a Raspberry Pi, and a lot of custom electrical and 3d-printed mechanical parts.

Apparently, Will plans to put his robot into service at the office of his employer, 37signals. This is exciting for us at Pololu because 37signals is the originator and a major sponsor of the Ruby on Rails web framework, on which our website is built. And although we did not attend this year’s RubyConf, we are proud that some of our parts, as shown in the video above, made an appearance.

You can find detailed build information in Will’s ping-pong robot blog posts.